Effect of Ionizing Radiation on Some Polymers

SUBMITTED TO

FACULTY OF SCIENCE

AIN SHAMS UNIVERSITY

541.38 K. A.

68994

in the fulfillment of the
requirements for

MASTER DEGREE IN CHEMISTRY

BY

KHALED ABDEL TAWAB ABDEL HAMIED

(B.Sc 1988)

1998

THESIS

ENTITELD

Effect of Ionizing Radiation on Some Polymers

Thesis Supervisors

Approved

Prof. Dr. A. M. Rabie August

Faculty of Science, Ain Shams University

NCRRT, AEA

HEAD OF CHEMISTRY DEPARTMENT

A-T. M. Fahmy

ACKNOWLEDGMENTS

The auther would like to thank Prof. Dr. Abdel Gawad Rabie, Dean of the Faculty of Science, Ain Shams University, for his capable supervision, encouragement, interest and useful discussion.

Deepest gratitude is owed to Prof. Dr. Abdel Hamid Zahran, Charmain of the National Center for Radiation Research and Technology (NCRRT), for suggesting the topic of this work, his keen enthasiam, sincere guidance and continuous supervision that made this work possible.

Great appreciation is owed to Prof. Dr. Abdel Wahab El- Naggar, Head of Radiation Chemistry Department, NCRRT, for his sincere guidance, continuous supervision and valuable help in evaluating and presentation this work.

Great thanks are due to Dr. Kareman El- Salmawi, Radiation Chemistry Department, NCRRT, for her sincere guidance, capable supervision, assistance and valuable discussion throughout this work.

The auther wishes to express his thanks to Prof. Dr. Zahera Tawfik, Head of Central Laboratories NCRRT and Dr. Lobna Abdel Wahab assistance in performing the Spectroscopic analysis, Thermal, Mechanical properties

Many thanks are due to El-SHNTI GROUP Co for their good Cooperation, many facilities and assistance throughout this work. Also many thanks are due to Eng. Nageh Shehata and Eng. Mohamed El-Asser, Head of Laboratory in UNITED Co. for many facilities and assistance throughout this work.

Thanks are also extended to the staff and fellow colleagues of Radiation Chemistry Department for their kind help. Also many thanks are due to the staff working in irradiation source facilitate for their Cooperation and assistance throughout this work.

CONTENTS

CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

1.1. Ionizing Radiation.	Page
1.2. Effect of Ionizing Radiation on Polymers	3
1.3. PVC Formulation.	7
1.4. Effect of Ionizing Radiation on PVC	21
CHAPTER II	
MATERIALS AND EXPERIMENTAL TECHNIQUES	
2.1. Materials.	46
2.1.1. Poly (vinyl chloride) 2.1.2. Plasticizer. 2.1.3. Stabilizer. 2.1.4. Solvents and Chemical Reagents.	46 46 46 47
2.2. Technical Procedures	47
2.2.1. Film Preparation. 2.2.2.Gamma Irradiation.	47 49
2.3. Analysis and Tests.	49
2.3.1. Mechanical Properties. 2.3.2. Spectroscopic Analysis. 2.3.3. Electrical Properties. 2.3.4. Molecular Weight Determination.	52 52 52
2.3.5. Thermogravimetric Analysis (TGA).	. 53

CHAPTER III

RESULTS AND DISCUSSION

	Page
3.1. Effect of Gamma Radiation on The Chemical Structure of	
different PVC Blends.	55
3.1.1.UV Analysis of PVC Blends with Ba-Cd Stearate	55
3.1.2.UV Analysis of PVC Blends with Lead Compounds	60
3.1.3. IR Spectroscopic Analysis of PVC Blend with Ba-Cd	
Stearate and Lead Compounds.	63
3.1.4. Intrinsic Viscosity and Molecular Weight of PVC Blends with Ba-Cd Stearate.	73
3.1.5. Intrinsic Viscosity and Molecular Weight of PVC Blends	
with Lead Compounds.	78
3.2. The Thermal Properties of Gamma- Irradiated of PVC Blends	82
3.2.1.Thermal Decomposition Behaviour of PVC Blends with Ba-Co	
Stearate	83
3.2.2. Thermal Decomposition Behaviour of PVC Blends with Lead	
Compounds.	93
3.3 Mechanical Properties of Gamma Irradiated PVC Blends	104
3.3.1. Stress -Strain Behaviour of PVC Blends with Ba-Cd	
Stearate.	104
3.3.2.Stress-Strain Behavior of PVC Blends with Lead	
Compounds	110

	Page
3.4.Electrical Properties of Gamma Irradiated PVC Formations.	121
Summary	124
References	131

List of figures

		Page
Figure 1	Cross section of the Co ⁶⁰ -gamma cell	50
Figure 2	Iso distribution of radiation dose inside the irradiation chamber	51
Figure 3	UV/vis. absorption of pure PVC at different wavelengths irradiated to different doses	57
Figure 4	Effect of irradiation doses on the UV absorbance of different PVC blends based on Ba-Cd Stearate at λ max = 280 nm	58
Figure 5	Effect of irradiation doses on the UV absorbance of different PVC blends based on lead compounds at $\lambda max = 280 \text{ nm}$	61
Figure 6	. IR spectra of unirradiated different PVC blends based on Ba-Cd Stearate.	64
Figure 7	IR spectra of different PVC blends based on Ba-Cd Stearate irradiated to 10 Mrad	65
Figure 8	IR spectra of different PVC blends based on Ba-Cd Stearate irradiated to 20 Mrad	66
Figure 9	IR spectra of unirradiated different PVC blends based on lead compounds.	69
Figure 10	IR spectra of different PVC blends based on lead compounds irradiated to 20 Mrad	70
Figure 11	Determination of intrinsic viscosity of pure PVC irradiated to different doses of gamma radiation.	74
Figure 12	Determination of intrinsic viscosity of different PVC blends based on Ba-Cd Stearate irradiated to different doses of gamma radiation.	75
Figure 13	Determination of intrinsic viscosity of different PVC blends based on CaCO_3 irradiated to different doses of gamma radiation.	79
Figure 14	Determination of intrinsic viscosity of different PVC blends based on lead compounds irradiated to different doses of gamma radiation.	80

Figure 15	TGA thermogram curves for pure PVC irradiated to different doses of gamma radiation.	84
Figure 16	TGA thermogram curves for plasticized PVC irradiated to different doses of gamma radiation.	85
Figure 17	TGA thermogram curves for pure PVC/Ba-Cd stearate irradiated to different doses of gamma radiation.	87
Figure 18	TGA thermogram curves for plasticized PVC/Ba-Cd stearate irradiated to different doses of gamma radiation.	88
Figure 19	Rate of reaction (dw/dt) and residual weight against (1/T) of the thermal decomposition for unirradiated different PVC blends.	91
Figure 20	TGA thermogram curves for plasticized PVC/DBLSt., irradiated to different doses of gamma radiation.	94
Figure 21	TGA thermogram curves for plasticized PVC/DBLSt./ $CaCO_3$, irradiated to different doses of gamma radiation.	95
Figure 22	TGA thermogram curves for plasticized PVC/TBLS, irradiated to different doses of gamma radiation.	96
Figure 23	TGA thermogram curves for plasticized PVC/TBLS/ CaCO ₃ , irradiated to different doses of gamma radiation.	97
Figure 24	Representative curves of the rate of reaction for unirradiated different PVC blends based on lead compounds.	100
Figure 25	Representative curves of the rate of reaction for different PVC blends based on lead compounds irradiated to 10 Mrad.	101
Figure 26	Representative curves of the rate of reaction for different PVC blends based on lead compounds irradiated to 20 Mrad	102

List of Tables

		Page
Table 1	Different PVC Blends.	48
Table 2	Effect of gamma radiation on the characteristic bands of the IR spectra of different PVC blends.	71
Table 3	Intrinsic viscosity and molecular weight of pure PVC and different PVC blends based on Ba-Cd Stearate irradiated to different doses of gamma radiation.	76
Table 4	Average number of chain scission G(s) of different PVC blends irradiated to 10 Mrad.	77
Table 5	Intrinsic viscosity and molecular weight of pure PVC and different PVC blends based on lead compounds irradiated to different doses of gamma radiation.	81
Table 6	Weight loss (%) at different decomposition temperatures for different PVC blends based on Ba-Cd Stearate irradiated to different doses of gamma radiation.	89
Table 7	Temperature of maximum value of the rate of thermal decomposition of different PVC blends based on Ba-Cd Stearate irradiated to different doses of gamma radiation.	92
Table 8	Weight loss (%) at different decomposition temperatures for different PVC blends based on lead compounds irradiated to different doses of gamma radiation.	98
Table 9	Temperature of maximum value of the rate of thermal decomposition of different PVC blends based on lead compounds irradiated to different doses of gamma radiation.	103
Table 10	Effect of gamma radiation on the tensile strength at break of different PVC blends based on Ba-Cd Stearate.	106
Table 11	Effect of gamma radiation on the elongation at break of different PVC blends based on Ba-Cd Stearate.	107
Table 12	Effect of gamma radiation on the modulus of elasticity of different PVC blends based on Ba-Cd Stearate.	109
Table 13	Effect of gamma radiation on yield stress and yield strian of different PVC blends based on Ba-Cd Stearate.	111

Table 14	Effect of gamma radiation on the tensile strength at break of different PVC blends based on dibasic lead stearate (DBLSt.).	113
Table 15	Effect of gamma radiation on the tensile strength at break of different PVC blends based on tribasic lead sulphate (TBLS).	114
Table 16	Effect of gamma radiation on the elongation at break of different PVC blends based on dibasic lead stearate (DBLSt.).	115
Table 17	Effect of gamma radiation on the elongation at break of different PVC blends based on tribasic lead sulphate (TBLS).	117
Table 18	Effect of gamma radiation on the modulus of elasticity of different PVC blends based on dibasic lead stearate (DBLSt.).	118
Table 19	Effect of gamma radiation on the modulus of elasticity of different PVC blends based on tribasic lead sulphate (TBLS).	119
Table 20	Effect of gamma radiation on the electrical resistivity of different PVC blends.	123