

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING DEPARTMENT OF AUTOMOTIVE ENGINEERING

BASES OF AUTOMATED ENGAGEMENT OF DRY FRICTION CLUTCH IN MOTOR VEHICLES

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING

 $\mathbf{B}\mathbf{Y}$

NABIL RAGHEB MOHAMMAD EL-NAGGAR

B.Sc. Mechanical engineering, 1968

Supervised by:

Dr. A.I. ABDEL-AZIZ

Prof. Dr. T. A. NOSSEIR

Prof. Assistant
Ain Shams University

Professor of Automotive Eng.

47367

Ain Shams Universit

Cairo, November 1993

EXAMINERS COMMITTEE

Name, Title, and Affiliation.

Signature:

1- Prof. Dr. Abdel-Dayem S. Sharara Professor of Auto-Engineering, Faculty of Engineering & Technology, Helwan University.

ASSha

2- Prof. Dr. Mohammad M. El-Alaily Professor of Auto- Engineering, Faculty of Engineering, Ain-Shams University. In In Staley

3- Prof. Dr. Tayseir A. Nosseir Professor of Auto-Engineering, Faculty of Engineering, Ain-Shams University.

T. Nassen

STATEMENT

This thesis is submitted to Ain-Shams University for the degree of: Master in mechanical engineering.

The work included in this thesis was carried out by the author in the department of Auto-Engineering, Ain-Shams University

from October 1988 till November 1993.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institute.

Date: November, 1993
Signature: Nabril El-Naggar

Name: NABIL RAGHEB MOHAMMAD EL-NAGGAR

C.Y OF THE AUTOUR

國際的改革 医乙酰基苯基 医二氯甲基苯甲基苯甲基苯

Normal Companies Companies

Burth Buts : 9 June, 1946

Birth Place : Shobra - Caire

First University Degree : B.Sc. of Mediant of Engineering

Specialization (Auto-Fug.)

Source of Degree : Milliary tectureal College

Degree Date : April, Post

Other Conditiones, them doces, and their secures:

Squamary of previous expensence: Working to the motor vehicle units, of the Egyptim Army till cank of Brigado Conceral.

Recent job : Free biginess.

FOR MY BELOVED FAMILY
WHO ALWAYS ENCOURAGES ME AND
OVERSHADOWS ME WITH THEIR
CONTINUOUS LOVE AND CARE.

CONTENTS

Title	age
Acknowl edgment	
Summary	i
Nomenclature	111
List of Figures, Tables, and Plates	v
CHAPTER (I): INTRODUCTION AND THE PREVIOUS WORK	
1.1 Introduction.	1
1.2 Clutch torque.	Э
1.3 Heat generation during the clutch engagement	8
1.4 Lining materials and coefficient of friction	13
1.5 Vibrations during the clutch engagement	19
1.6 Design of the clutch friction pairs	SS
1.7 Automation of the friction clutch operation	27
1.8 Conclusion	30
CHAPTER CII): MATHEMATICAL MODELING OF THE SYSTEM	
2.1 Introduction	32
2.2 Simplified model for the vehicle transmission	33
2.3 Equations of motion	
2.3.1 Equation of motion of the engine side	35
2.3.2 Equation of motion of vehicle and	
transmission side	35
2.4 Solution of the differential equations of motion	36
2.5 Alternative theoritical forms of the engine and	
the clutch torques,	39
2.5.1 Clutch engagement slip time	41
2.5.2 The synchronizing speed of clutch	41
2.5.3 The generated heat during clutch engagement	42
2.6 Parameters affecting the friction clutch engagement	. 42
2.7 Clutch torque build-up during engagement	43
2.8 Remarks	44
2 9 Conclusion	4.6

CHAPTER CIII): EXPERIMENTAL WORK

3.1	Introduction	48
3, 2	Description of the apparatus	
	3.2.1 The apparatus construction	49
	3.2.2 The plotting pens motion	50
	3.2.3 Collection of the plotted paper	51
	3.2.4 The frame description	51
	3.2.5 Fixation of the wire cables	52
3.3	Installation of the apparatus in the test vehicle	52
3.4	Test preparations	53
3.5	Test procedure	54
3.6	Conclusion	55
CHAPTE	R CIV): EXPERIMENTAL RESULTS AND DISCUSSION	
4.1	Introduction	56
4. Z	Time scale determination	57
4.3	Pedal displacement scale determination	
	4.3.1 Accelerator pedal displacement scale	58
	4.3.2 Clutch pedal displacement scale	80
4.4	Phase between accelerator and clutch pedal motions	62
4.5	The apparatus trace	63
4.6	Plotting the two pedals displacements on same graph	63
4.7	Curve fitting of the experimental results	64
4.8	Tests' results and analysis	
	4.8.1 Driver behaviour on the pedals	
	4.8.1.1 Behaviour of driver A	65
	4.8.1.2 Simplified way for behaviour comparison	68

4.8.2 Comparison of the test drivers' behaviour	99
4.8.3 Computer prediction of the test drivers'	
performance	73
4.9 Determination of the best driving skill	75
4.10 Conclusion	76
CHAPTER CVD: CONCLUSION	,
1. Mathematical modeling of vehicle transmission system	78
2. Drivers' behaviour during the clutch engagement	79
3. The drivers'behaviour recorder	79
4. The clutch slip time and the generated heat energy	80
5. Measuring the driving skills	81
6. Future work	82
APPENDICES	
Appendix (I) : Technical Specifications of test vehicle	83
Appendix (II): Determination of the vehicle and	
the engine inertia	84
Appendix (III): The computer program	86
Appendix (IV) : Practical measurements	88
Appendix (V) : Determination of the clutch torque	
build-up zone	90
Appendix (VI): Curve fitting of the experimental results	9:4
REFERNCES	9 5
Figures, Tables, and Plates	97
Arabic summary	

ACKNOWLEDGMENT

The author wants to express his deep gratitude and thanks to his supervisors:

- 1- Professor Dr. T. A. NOSSEIR,
 Prof. of Automotive Engineering,
 Ain-Shams University.
- 2- Prof. Assistant Dr. A. I. ABDEL-AZIZ, Lecturer of Automotive Engineering, Ain-Shams University.

And thanks to the persons who supported me in this research work:

- 1- Gen. Eng. F. M. EL-AWADY, Chief of A.F. Main Work Shop for Vehicles.
- 2- Brig. Eng. S. M. MABROUK, Chief of A.F.Vehicles Training Center.
- 3- Staff of Automotive Laboratory, Energy and Automotive Engineering Department, Ain-Shams University.

And thanks to :

The Egyptian AIR FORCE Technical Units for Vehicles, Repair Work Shop and Training Center.

SUMMARY

The dry friction clutch plays important functions in motor vehicles during the movement of stationary vehicles, and ensures easy gear shifts during the speeding up and slowing down motion. On the other hand, the driver skill and behaviour in operating the clutch during engagement and disengagement has unquestionable effect on the achievement of the desirable performance and on the service life of the clutch. Further, the service life has direct relation to the high repair costs, and down time needed for the early damaged clutch. Moreover, the optimum operation of the clutch has a great impact on the fuel savings.

An apparatus was designed and built to record the clutch pedal and the accelerator displacements during the disengagement and engagement of the clutch at the different speed shifts of the vehicle.

Tests were carried out on eight drivers of different skill levels, using the same test vehicle, and under the same operating conditions. Results of the tests were recorded and used to deduce the clutch slip time, and the amount of the generated heat as a result of that slip. Comparisons between the drivers' performance have been carried out.

NOMENCLATURE

SYMBOL	MEANING	UNITS
Af	Frontal area of the vehicle.	[m²]
f _r	Tyre rolling resistance coefficient.	
Fa	Air resistance to the vehicle motion.	[N]
Fd	Draw-bar pull of the trailer.	· [N]
Fg	Grade resistance to the vehicle.	נא ז
Fi	Inertial resistance of the vehicle.	[N]
Fr	Rolling resistance at wheels.	[N]
FR	Total resistance force acting on wheels.	[N]
g	Gravitational acceleration constant, 9.81	[m/s ²]
ig	Gear box ratio.	
io	Final drive reduction ratio.	
I ₁	Equivalent mass moment of inertia of the en	gine
	moving parts.	[kg m²]
sI	Equivalent mass moment of inertia of the ve	hicle,
	referenced at the speed of the clutch shaft	. [kg m²]
I eq	Equivalent mass moment of inertia of the ve	hicle,
	seen at the driving wheels' axle.	[kg m²]
ı w	Inertia moment of the wheels.	[kg m²]
k _a	Air resistance coefficient.	[N.S ² /m ⁴]
М	Mass of the vehicle.	[kg]
n,n2	Indices of engine and clutch torque function	s chosen
	generally as: 0,0.2,0.4,0.6,0.8,1,1.2,1.4,2	,3,4,5
rd,r	Dynamic & rolling radii of the driving whee	ls. [m]

TC	Maximum clutch torque.	[Nm]
TE	Maximum engine torque.	[Nm3
Tc(t)	Clutch torque function.	
Te(t)	Engine torque function.	
TrCtO	Total resisting torque on wheels, referenced a	t
	the clutch output shaft, function of time.	[Nm]
Tw	Resultant torque on wheels.	[Nm]
t	Time.	· [s]
W	Weight of the vehicle.	[N]
×	Linear translation of the wheels.	[m]
×	Linear acceleration of the wheels.	[m/s²]
α	Road slope angle.	[°]
6 ₁	Relative delay time of accelerator pedal movem	ent.[s]
క్ష	Relative delay time of clutch pedal movement.	[s]
γ	Ratio of engine maximum torque, [0 < γ < 1].	
η	Mechanical efficiency of the vehicle transmiss	ion.
^τ 1, ^τ 3	Build up time of the engine torque.	[2]
ε ^τ	Build up time of the clutch torque.	[s]
Ω ₁ ,Ω ₂	Initial angular velocities of the engine and t	he.
	friction plate (s), respectively.	[r.p.m]
ω ₁ ,ω ₂	Instantanious angular velocities of the engine	and
	friction plate (s), respectively.	[r.p.m]
Ø	Angular displacement of driving wheels.	[rad]
8	Angular acceleration of driving wheels.	rad/s ²]

LIST OF FIGURES, TABLES, AND PLATES

Fig. N	o. Title	Page
(1.1)	Model of friction clutch system	97
	Model of friction clutch system.	
(1,2)	Experimental apparatus.	97
(1.3)	Instrumentation for clutch test rig.	98
(1.4)	Mathematical model of the vehicle.	99
(1.5)	Clutch engagement characteristics, (out put of model).	100
(1.6)	Simplified model of a friction clutch.	101
(1.7)	Velocities of the clutch plates.	101
(1.8)	Load torque versus time	102
(1.9)	Torque transmitted by clutch driven shaft.	102
(1.10)	Friction characteristics with smooth surfaces.	103
(1.11)	General mathematical model of friction clutches.	104
(1.12)	Nomograms of applicability of friction pairs.	105
(1.13)	Interrelation of clamping force and geometric	
	characteristics of single disc clutch friction pairs.	105
(1.14)	Functional schematic of automatic dry clutch.	106
(1.15)	Clutch engagement following gear shift and free wheelin	g. 107
(1.16)	Semi-automated mechanical transmission.	108
(1.17)	(a) Shift simulation.	109
	(b) Clutch filling.	109
	(c) EMC modifications.	109
(2.1)	Simplified mahematical model for vehicle transmission.	110
(2. 2)	Reduced mathematical model for the vehicle transmission	. 111
(2.3a)	.(2 3h) General form for the engine torque 112	119

(2.4a)	General form for the clutch torque.	114
(2.45)	Relation between pedal movement and the related torque	115
(2.5) C	a),(b),(c) Effect of indices on t $_{\rm g}$, $\omega_{\rm g}$,and He. 116 to	118
(2.6)	Flow chart for the computer program.	119
(2,7)	Clutch pedal motion during the engagement stages.	120
ca. 8)	Scheme of single plate dry friction clutch.	121
(2.9)	(a) Engine torque lags the clutch torque.	122
	(b) Clutch torque lags the engine torque.	122
(3.1)	(a) Assembly drawing of the apparatus (diminished).	123
	(b) Parts list of the apparatus.	124
(3.2),	(3.3), to (3.18) Detail drawings of the apparatus.	125
(4.1)	(a) Real sample of the apparatus trace.	142
	(b) Real sample of apparatus trace, (unified time-axis)	143
(4, 2)	Calibration curve of the plotter time scale.	144
(4, 3)	Determination of the pedals displacement scales.	145
(4.4)	Typical trace of the apparatus for the four speed gear	
	shifts, driver A (with a reduced scale).	146
(4.5)	Clutch and accelerator pedal traces for every gear shi	ſt.
	driver A: (a), (b), (c), and (d).	147
(4.6a)	to (4.9a) Drivers' behaviour on the clutch pedal	148
(4.66)	to (4.9b) Drivers' behaviour on the accelerator	148
(4.10)	(a),(b),(c),(d) All relations as output of the compute	r
	program, first, second, third, and fourth speeds.	152
(4.11)	(a),(b),(c) Distribution of the slip time, synchronizat	ion
	speed, and the generated heat energy during engagement	156
CA3.10	Flow chart of the designed computer program	87