COMPARATIVE STUDY OF SOME DECISION MAKING PROCEDURES USED IN FIELD CROP EXPERIMENTS

BY SAMIA GODA ATIA MOHAMED

B.SC. Agric, (Cairo), Univ.,1982

M.SC.Agric, (Agronomy) Ain Shams Univ., 1995

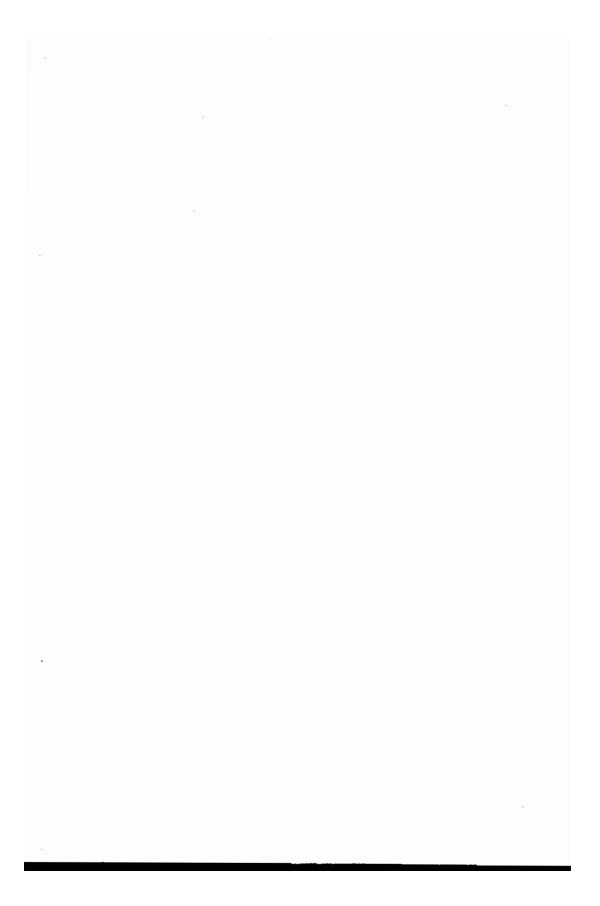
633.12

A thesis submitted of in partial fulfillment

ΟŤ

the requirements for the degree of

DOCTOR OF PHILOSOPHY


TN

Agricultural Science (AGRONOMY)

63887

Agronomy Department Faculty of Agriculture Ain Shams University

(1998)

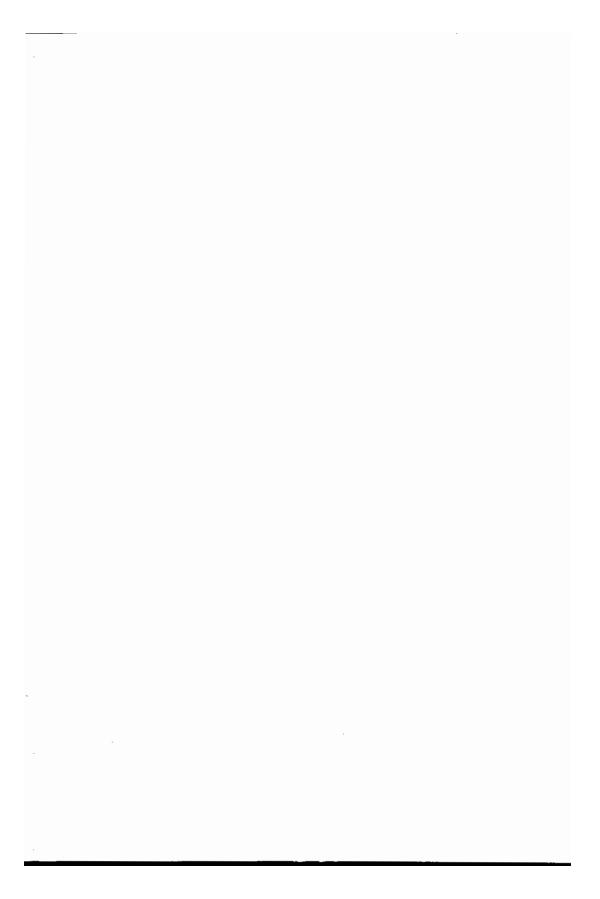
APPROVAL SHEET

COMPARATIVE STUDY OF SOME DECISION MAKING PROCEDURES USED IN FIELD CROP EXPERIMENTS

By

SAMIA GODA ATIA MOHAMAD.

B.SC.Agric (Cairo), Univ., 1982.


M.SC.Agric (Agronomy) Ain Shams Univ., 1993

This thesis for ph.D degree has been approved by:

Prof. of Agronomy, Cairo, Univ.

Prof. Or. Nemat A. Nour El-Din Non Alcause of Learning Prof. of Agronomy, Ain Shams Univ.

Date of Examination: 29/12/1997

COMPARATIVE STUDY OF SOME DECISION MAKING PROCEDURES USED IN FROM FIELD CROP EXPERIMENTS

BY

SAMIA GODA ATIA MOHAMED

B.SC. Agric (Cairo) Univ., 1982 M.SC. Agric (Agronomy) Ain shams Univ., 1993

Under the supervision of:

Prof. Dr. Nemat A.Nour El-Din

Agron Dep., Fac. of Agric. Ain Shams Univ.

Prof. Dr. A.A.Abdel- Halim

Director of Central Laboratory for Design and statistical Analysis Research.

Dr. A. El. B ially.

Assist. Prof. Agric Ain Shams Univ.,

ABSTRACT

Samia Goda Atia Mohamed. Comparative study of some decision making procedures used in field crop experiments. Unpublished Doctor of philosophy Dissertation, University of Ain shams, Faculty of Agriculture, Department of Agronomy, 1997.

This research explains the concept and importance of factors affecting experimental decision. It enables the researcher to have a quick knowledge about the nature of data. It facilitates drawing and interpreting results. Choosing the ideal procedure should be built on three basic steps:

- (1) Detection recognizing the concept.
- (2) Diagnose the symptoms (effect)and
- (3) Determine the remedy (correction).

There are two consideration that should be taken into account during the decision making process namely, consideration concerning experimental design and consideration concerning statistical analysis Regarding experimental design, the higher number of replication the lower the experimental error and vise versa.

Selecting efficient designs also raise the efficiency. Further more, estimation of relative efficiency can be helpful to evaluate experimental design. Regarding statistical analysis, the first basic step is the analysis of variance. If the coefficient of variation, CV% was found to be relatively high, it means that the experimental design is not efficient. To solve these problems, selecting efficient

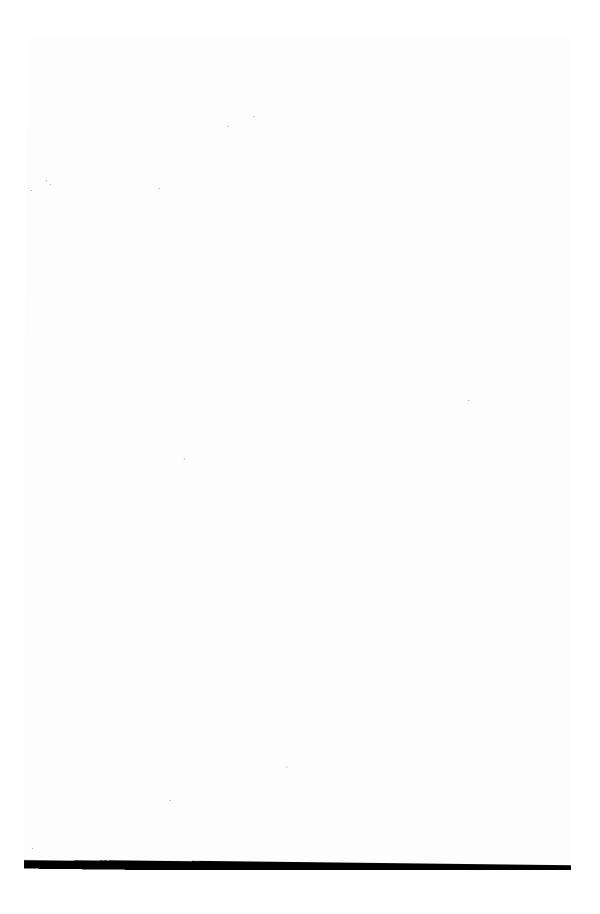
experimental plan, transformation of data another scale, omitting some treatments or observations.

Selecting valid error can be used to raise efficiency. It enables the researcher to make the correct statistical decision and recommendation. The material used in this study were experimental data, simple, factorial, horticulture, and weed control.

Key words:

Experimental design, error, ANOVA, ANOCOVA, efficiency, expectation mean Square, normality, additivity, effect detection, correction, non parametric, experimental decision.

ACKNOWLEDGMENT


The writer wishes to express his sincere appreciation and gratitude to Dr. Nemat Nour El Din, professor of Agronormy, Faculty of Agriculture, Ain shams University for suggesting the problem, supervision and constructive criticism during the progress of study and the preparation of manuscript.

Thanks and gratitude are also due to Dr. A.A.Abed Halim, professor of applied statistics of the central statistical laboratories, Agricultural research center, for suggesting the problem, supervision valuable, constructive criticism and revising the manuscript.

Thanks and gratitude are also extended to Dr. M. El-Re. El-Bi allyAssociate prof. of Agronomy, Faculty of Agriculture, Ain shams University for supervision and help offerd during this study.

I am also indebted and offer my thanks to all members of central laboratory for design and statistical analysis research for financial support and facilities offered.

Special thank are also extended to my parents and all my family for continuous encouragement and their kind collaboration.

CONTENTS

		Page
1-	INTRODUCTION	1
2-	REVIEW OF LITERATURE	3
1-	Accuracy and precision of data	3
2-	The principle roles of experimental design	4
3-	Normality	4
4-	Heterogeneity of sets of estimated variances:	6
5-	Selecting valid error.	7
6-	Selecting efficient experimental plan	9
7-	Efficiency parameters	12
8-	Number of replications.	15
9-	Analysis of variance (ANOVA).	16
10-	Interpretations of results from factorial	19
	experiments.	
11-	Mean separation vs curve analysis	20
12-	curve analysis.	23
13-	Covariance analysis	26
14-	Linear regression and prediction	29
15-	Data transformation	31
	1- Square root transformations.	32
	2- Logarithmic transformation	33
	3- Angular transformation.	34
3-	MATERIAL AND METHODS	36
1- S	Selecting efficient experimental plan	39
	- Relative efficiency of the randomized	39
	complete block design	
2- (Optimum number of replication	42

3-	Testin	g normality	43
4-	Additi	vity of effects.	43
5-	Homo	geneity of variances	43
6-	Indepe	endence of errors	44
7-	The m	agnitude of experimental error	44
8-	Selecti	ng valid error	44
9-	Mean	separation	45
10	- Suppo	rting analysis	46
11-	- Multiv	variate analysis and prediction equations	46
12	- Transf	ormation of data	46
		•	
4-	RESUI	LTS AND DISCUSSION	48
	1-	Relative efficiency	50
	2-	Additivity of effects	57
	3-	Number of replication, plot size and the	62
		magnitude of detected difference	
	4-	Magnitude of variability	64
	5-	Selecting valid error	66
	6-	Mean separation of factorial experiment	75
	7-	Curve analysis	92
	8-	Supporting analysis. Analysis of	104
		covariance ANCOVA	
	9-	Combined analysis	104
	10-	Regression and predication parameters.	111
	11-	Efficiency of transformation	118
	12-	Effect of omitting some treatments.	126
5-	SUM	MARY	134-142
6-	REF	ERENCES	143-152
7-	ARAI	BIC SUMMARY	

LIST OF TABLES

No.		Page
1	Relative efficiency, RE%, of randomized complete block RCB relative to completely randomized design, CRD for yield and yield	
	factors .	51
2	Relative efficiency, RE%, of randomized	
	complete block RCB relative to completely	
	randomized design, CRD for weed citrus.	52
3	Relative efficiency, RE%, of split plot design	
	relative to randomized complete block design	
	for yield and yield factors.	54
4	Relative magnitude of error mean square,	
	EMS, compared with residual mean square,	
	RMS	58
5	Relative magnitude of error mean square,	
	EMS, compared with residual mean square,	
	RMS,	59
6	Magnitude of detected differences for various	
	combination of plot size and number of	
	replication	62
7	Magnitude of variability expressed as	
	coefficient of variation, CV%, of yield for	
	different field crops.	65
8	Degrees of freedom, DF, means squares, MS,	
	expectation mean square, EMS, variance	
	component and δ^2 variance ratio, F.	67

9	Variance ratio, F,. mean square, MS, expected	
	means square, EMS, CV%, And LSD, as	
	different characters assuming fixed and	
	random model.	68-69
10	Variance ratio, F, mean square, MS, expected	
	mean square, EMS, CV%, and LSD, as	
	different characters assuming fixed and	
	random model.	70
11	Variance ratio, F, mean square, MS, expected	
	mean square, EMS, CV%, and LSD, as	
	different characters assuming fixed and	
	random model	71-73
12	Comparison between final results drawn	
	according to main and combined effects of a	
	three factors experiment for several subject on	-
	field crops.	76
13	Mean separation using method of multiple	
	comparison of nitrogen fertilization on zea	
	maize ·	77
14	Mean separation using method of multiple	
	comparison of irrigation experiment on	
	soybean	77-81
15	Mean separation using method of multiple	
	comparison of irrigation experiment on soy	
	bean.	28-83
16	Mean separation using method of multiple	_
	comparison of variety experiment on faba bean	38-86
17	Mean separation using method of multiple	
	comparison of density experiment on faba	
	been	87-88