STUDY OF DISTRIBUTED SYSTEM AMPLIFIERS AND OSCILLATORS USING NEGATIVE RESISTANCE IN SEMI-CONDUCTORS

THESIS

Submitted for the Degree of DOCTOR OF PHILOSOPHY
IN PHYSICS

By
THANAA ABD EL-TAWAB KAMH

(B. Sc.; M. Sc.)

Department of Physics University College for Girls Ain Shams University

1985

Study of Distributed System Amplifiers and Oscillators using Negative Resistance in Semi-conductors

Thesis Advisors

Signature

- 1. Prof. Dr. M.A. Kenawy.

 Head of Physics dept., University

 College for Girls (Ain Shams University)
- 2. Prof. Dr. M.M. Hasab E1-Naby Professor of Physics, University College for Girls (Ain Shams University).
- 3. Prof. Dr.A.H.Abou EL-Ela.

 Professor of Physics, Faculty of Science
 AL-AZHAR University (Girls).

Approved,

Head of Physics Dept.

Manzon H. Sl Naly

ACKNOWLEDGEMENT

The auther wishes to express her deep gratitude and thanks to Prof. Dr .M.A.Kenawy, Head of Physics Dept. University College for Girls - Ain Shams Uninersity for his stimulating supervision, constant advice and fruitfull discussions which have made the completion of this work possible.

The auther wishes to express her deepest gratitude to Prof. Dr.A.H.Abou EL-Ela, Professor of Physics, ... Faculty of Science EL-AZHAR University (Girls Branch), for suggesting the point of research, kind supervision, constant advice and invaluable discussions during the period of this work.

The auther is indepted to Prof. Dr. M.M. Hasab EL-Naby, Professor of Physics, University College for Girls-Ain Shams University, for this supervision, encouragment and advice.

Thanks are also due to Prof. Dr.A.A. Sabry,
Professor of Mathematics, University College for Girls
Ain Shams University, for his kind help and advice.

She wishes to thank all colleagues of Scientific Computer Centre, Ain Shams University , for providing the necessary computing facilities.

ABSTRACT

The aim of the present work, is to study the propagation of electric signals through active distributed systems (amplifiers and Oscillators) using tunnel diodes. Experimental and theoretical investigations of the tunnel diode cascaded amplifiers and oscillators were carried out using Ga As tunnel diodes. The fundamental results of the thesis are:

- A. Theoretical analysis of the distributed amplifier using distributed equivalent circuit, and three different approachs shows that, the attenuation constant of the line $| \sim |$ and the imaginary part $| \beta |$ (phase shift) increase sharply with the frequency $n=w/w^*$ in the low frequency range 0 < n < 1, then decrease at higher frequencies (n > 1). Until $| \sim |$ becomes nearly of negligible value at n=10, and $| \beta |$ becomes in the order of 0.1. Moreover, the calculated characteristic wave impedance of the transmission line increases linearly with the frequency $n=w/w^*$, $(w^*=1/CR_0)$.
- B. Experimental design of the distributed tunnel diode amplifier (in the range of frequencies from 1 to 10 MHZ) shows that, the gain of the cascaded amplifier

exceeds unity. It decreases somewhat after three cascaded stages if the tunnel diodes used are all of the same type. The gain has a value of 2.6 at $f_0=1.7$ MHz for three cascaded stages with T.D.of the type AM301 The dependence of the gain of the individual stages and the cascaded stages, on the frequency was measured using an input signal amplitude of 20 m V , and it shows that, in general the gain increases with the frequency, reaching a peak value then it decreases at higher frequencies. For the cascaded stages amplifier the gain has at least two peaks at two different frequencies one of the peaks has a higher value. It is found that, the peak gain depends on the following factors: The type of tunnel diode. The working bias voltage, The values of the circuit parameters (L, C , R_{I} and r_{O}). The number of T.D. used in each stage, The number of cascaded stages, and

In general, the shape of the gain-frequency dependence is attributed to the dependence of the negative resistance of the T.D. on the frequency and to the resonance nature of the circuit (L.C).

The type of cascading circuit connections.

The amplitude characteristics of the individual stages and the cascaded stages measured at the frequency of the peak gain were found to be almost linear.

It is found that, the optimum circuit parameters for a peak gain are:

$$R_{L} = 10 \text{ k.s.}, r_{0} = 1 \text{ s.}, L = 25 \text{ y.H.}, C = 10^{3} \text{ pF and}$$

 $R_{L} = 3 \text{ s.}$

Moreover, it is found that, the gain is greater when the series diode (TD1) is shunted with a small resistor $r_{\rm O}$ = 1 \sim .

- C. Theoretical analysis of the distributed oscillator using distributed equivalent circuit shows that, the frequency of oscillations $n=w/w^*$ decreases with increasing m values: $(m=r_O/R_O)$ i.e. with decreasing the negative resistance of the tunnel diode (R_O) ; while it has a constant value for all values of S, $(S=L/C_dR_O^2)$ i.e. for small distributed capacitance (C_d) and high negative resistance values.
- D. Experimental study of the individual tunnel diode oscillators shows that; the amplitude, frequency as well as the form of the out put oscillations depend on the following factors:

The bias voltage u,

The circuit parameter values (R_L , r_o), and the values and positions of external variable air capacitor (C1)

The dependence of the amplitude and frequency of oscillations on the bias voltage (u_0) , and the external capacitor (C1), were measured for the individual I.D oscillators. It shows that, the frequency of oscillations increases with the bias voltage reaching a peak value, then decreases at higher bias values.

While, the amplitude of oscillations increases somewhat with the bias voltage. Both the frequency and amplitude drop to zero at certain bias voltages, which reflects the limits of the dynamic negative resistance of the tunnel diode.

The dependence of the frequency of oscillations on the external variable capacitor Cl (50-875 pF) in three positions I, II and III, shows that, it decreases with higher values of Cl, for positions II and III, while for position I it is almost constant with increasing Cl. The dependence of the amplitude of oscillations

on C l shows that, it increases slightly with the values of C l for all the three positions (I, II and III).

Out put wave forms confirm the dependence of the amplitude and frequency of oscillations on the bias voltage and the position of Cl.

CONTENTS

	Page
ABSTRACT.	
CHAPTER I: Introduction:	
I-1. Physics of Tunnel diode :	1
(a) Nature of tunnel diode	1
(b) Mechanism of tunnelling effect in tunnel diode.	2
I-2. Tunnel diode equivalent circuit:	6
(a) General	6
(b) Frequency dependence of negative resistance	. 8
I-3. Stability criteria for tunnel diode circuits	10
I-4. Tunnel diode Oscillators	14
I-5. Tunnel diode distributed amplifiers	16
I-6. Tunnel diode distributed Oscillators	18
CHAPTER II: Theoretical Analysis of Tunnel Diode Dis-	
tributed Amplifier:	
II-1. Introduction	19
II-2. The equivalent circuit and the fundamental equa-	
tions of the distributed amplifer	19
II-3.(a) Calculation of the gain and the amplifier	
parameters	25
II-3.(b) Calculation of the wave impedance of the	20
line	39
II-4. Another form for the gain equation of the line	

	Page
II-5. Another derivation for the gain equation	40
II-6. Special case with one tunnel diode per stage	47
CHAPTER III: Theoretical Analysis of Tunnel Diode Distri-	
buted Oscillator:	
III.1. Theoretical analysis of the condition of self	
Oscillation in tunnel diode oscillater	55
(a) The equivalent circuit and condition of self	
Oscillation	55
(b) Characteristic curves of the Oscillator.	59
CHAPTER IV: Experimental Investigation of the Tunnel	
Diode cascaded amplifier:	
IV-1. Experimental circuit of the cascaded amplifier	62
IV-2. Characteristics of the individual stages of the	
amplifier	
(a) Characteristics of the first stage	63
(b) Characteristics of the second and each of the	
successive stages	65
IV-3. Characteristics of the cascaded stages amplifier	
(a) Characteristics of type "A" circuit connection	67
(b) Characteristics of type "B" circuit connection.	69
(c) Characteristics of type "C" circuit correction	71

	Page
CHAPTER V: Experimental Investigation of the	
Tunnel Diode in dividual Oscillators	75
V-1. General	.,0
V.2. Characteristics of the individual lumped. Oscillators.	
CHAPTER VI: Discussion and conclusion	94
APPENDIX	102
REFERENCES	117
ARABIC SUMMARY.	T 1 1

CHAPTER I INTRODUCTION