Development of New Indirect Spectrophotometric Methods of Analysis Using Phenolphthalin as Reagent

A Thesis Submitted by

Rafaa Mohamed Rashad Mahmoud

(M, Sc.)

For the Degree of Doctor of Philosophy in Chemistry

_

Faculty of Science Ain Shams University

1985

TO MY FAMILY

Development of New Indirect Spectrophotometric Methods of Analysis Using Phenolphthalin as Reagent

Thesis Advisors

Prof. Dr. ALI M. EL-ATRASH

Prof. Dr. SAMI K. TOBIA

Prof. Dr. SALAH A. SHAHINE

Approved

.. S...lobia

Prof. Dr. GAMAL E.M. MOUSSA

Head of Chemistry Department .

ACKNOWLEDGMENTS

This research work has been undertaken under the supervision of Prof. Dr. S. Tobia, Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University, to whom the author is greatly indebted for his unlimited assistance, valuable guidance, constructive discussions and critical reading of the entire manuscript.

The completion of this work was to a large measure the result of the kind advice of Prof. Dr. Ali M. El-Atrash, Vice Dean for Graduate Studies and Professor of Inorganic and Nuclear Chemistry, Faculty of Science, Ain Shams University. His deep interest, critical reviewing of the manuscript and continuous support during all phases of the preparation of the thesis are gratefully acknowledged.

Particular gratitude is expressed to Prof. Dr. Salah A. Shahine, Professor of Analytical Chemistry, Faculty of Engineering, Ain Shams University, who utterly suggested, planned and supervised all steps of this research work. His sincere guidance, fruitfull discussions and critical reading of the entire manuscript were a great aid in developing this work.

No te

Most of the work presented in this thesis has been published in the following papers:

- 1. Salah A. Shahine and Rafaa M. Mahmoud, Indirect Spectrophotometric Determination of Some Reducing Agents Using Phenolphthalin as Reagent, Mikrochim. Acta, 2, 431-434 (1978).
- 2. Salah A. Shahine and Rafaa M. Mahmoud, Indirect Spectrophotometric Determination of Reducing Sugars and Ascorbic Acid Using Phenolphthalin as Reagent, Mikrochim. Acta, 1, 119-122 (1980).
- 3. Salah A. Shahine and Rafaa M. Mahmoud, Selective Spectrophotometric Determination of Gold Using Phenol-phthalin as Reagent, Bulletin of the Faculty of Engineering, Ain Shams University, 11, P. Chem., 1/1-1/7 (1980).

Besides, the following article is in preparation:
Salah A. Shahine and Rafaa M. Mahmoud, Rapid Spectrophotometric Determination of Traces of Some Anions in
Water.

CONTENTS

	Page
SUMMARY	i
CHAPTER I	
General Introduction	1
Direct and Indirect Colorimetric Methods	1
Direct Colorimetric Methods	1
Indirect Colorimetric Methods	3
Organic Oxidising and Reducing Agents	8
Phenolphthalin as an Oxidation-Reduction Reagent .	10
The Present Work	11
CHAPTER II	
Indirect Spectrophotometric Determination of Some	
Reducing Agents Using Phenolphthalin as Reagent	
Introduction	14
Quinol	14
Hydroxylamine	16
Hydrazine	17
The Present Work	. 19
Experimental	20
Apparatus	20
Reagents	20
Standard solutions	, 21
Preliminary investigations	21
Analytical procedure	. 27
Results and Discussion	35
Sensitivity of the method	, 36
Analysis of "unknowns"	37

	Page
Reproducibility	37
CHAPTER III	
Indirect Spectrophotometric Determination of Reducing	
Sugars and Ascorbic Acid Using Phenolphthalin as	
Reagent	
Introduction	41.
Reducing sugars	41
Ascorbic acid	54
The Present Work	60
Experimental	60
Apparatus and reagents	60
Standard solutions	61
Preliminary investigations	62
Analytical procedure	62
Results and Discussion	9 3
Selectivity of the method	95
Sensitivity of the method	95
Analysis of "unknowns"	96
Reproducibility	97
Conclusion	98
CHAPTER IV	
Modified Spectrophotometric Determination of Gold	
Using Phenolphthalin as Reagent	
Introduction	106
Methods involving the formation of coloured	- "
mold and	106

	Page
Methods involving the oxidation of organic	
compounds to strongly coloured products	108
Methods based on the formation of complex	
compounds	110
The Present Work	122
Experimental	124
Apparatus and reagents	124
Standard gold solution	124
Preliminary investigations	124
Analytical procedure	130
Results and Discussion	136
Conditions of the reactions	136
Sensitivity of the method	137
Precision of the method	137
CHAPTER V	
Rapid Spectrophotometric Determination of Traces of	
Some Anions in Water Using Phenolphthalin as Reagent	
Introduction	140
Methods depending upon the redox properties	
of the anions	1.40
Methods based upon the formation of complex	
compounds or ion pairs	144
Methods depending upon displacement reactions	148
Catalytic methods	151
The Present Work	151
Experimental	153
Apparatus and reagents	153

	Page
Standard solutions	153
Preliminary investigations	154
Analytical procedure	157
Results and Discussion	167
Sensitivity of the method	174
Analysis of "unknowns"	175
Reproducibility	175
REFERENCES	18:
OTIMMADV TXI ADADTO	

SUMMARY

The work presented in this thesis deals with the use of phenolphthalin (reduced form of phenolphthalein) for developing new indirect spectrophotometric methods of analysis. The colourless alkaline solution of phenolphthalin turns red by the action of oxidising agents that can act in alkaline media (due to oxidative regeneration of phenolphthalein.

The first chapter of this thesis contains/a detailed survey of the literature dealing with the direct and indirect colorimetric methods of analysis, the organic oxidising and reducing agents used in this type of analysis and the use of phenolphthalin as an oxidation-reduction reagent.

Chapter II comprises an indirect method for the spectrophotometric determination of microgram amounts of quinol, hydroxylamine and hydrazine. A known excess of potassium ferricyanide solution is added to the sample solution to oxidise the compound to be determined; the excess of ferricyanide is then determined spectrophotometrically using phenolphthalin.

An indirect spectrophotometric method for the determination of reducing sugars and ascorbic acid is described in chapter III. The method is based on the reaction of an excess of ferricyanide with the reductant and the determination of the surplus ferricyanide spectrophotometrically using phenolphthalin.

A modified method for the indirect spectrophotometric determination of gold using phenolphthalin as a reagent was investigated in chapter IV. In this method, gold is extracted from other metals as bromoauric acid, recovered in water and determined spectrophotometrically by oxidising the colourless phenolphthalin to the red phenolphthalein.

Chapter V describes a new indirect spectrophotometric method for the determination of bromide, iodide, thiocyanate, sulphide and cyanide in water. The method is based on the exchange reaction with silver ferricyanide and the subsequent spectrophotometric determination of the displaced ferricyanide using phenolphthalin.

All the reactions involved in the present work were critically studied and the results were analyzed statistically.

CHAPTER I

General Introduction

CHAPTER I

DIRECT AND INDIRECT COLORIMETRIC METHODS

Colorimetric methods can generally be classified into direct and indirect methods depending on the way by which the coloured product, to be measured, is formed. A survey of some of these methods covering the various kinds of reaction is presented in the following pages.

Direct Colorimetric Methods:

In this type, the constituent to be determined is transfermed into a coloured compound by one of the following methods:

1. The constituent is allowed to react with a reagent with which it forms a stable coloured complex. Examples: calcium with naphthalhydroxamate (1), palladium with triphenylphosphine (2), ruthenium with isonitrosobenzoylacetone (3), beryllium with Chrome-Azurol S (4), titanium with diantipyrinylmethane and tartaric acid (5), cobalt with 2-nitroso-1-naphthol (6), therium with galangin (3,5,7-triphydroxyflavone) (7), copper(II) and mercury(II) with di-1-naphthylthiocarbazone (8), ferric with thiocyanate (9) or with chelidamic acid [4-hydroxypyridine-2,6-dicarboxylic

acid] (10), ferrous with 1,3-dimethyl-5-nitroso-2-thioxoper-hydropyrimidine-4,6-dione (11), tungsten(VI) by forming tungsten-catechol violet-hexadecylpyridinium (1:1:2) complex (12), osmium(III) with exalic acid (13), nitrate with rhenium and furil α -dioxime (14), iodide with butylrhod-amine S (15), and aliphatic [alcoholic] hydroxyl in the range α to α with vanadium 8-hydroxyquinolinate (16). The latter method was modified to determine methanol in aqueous and non-aqueous solutions (17).

- 2. The constituent is exidised to a higher state which has a characteristic colour. Examples: manganese(II) is exidised to permanganate (18), chromium(III) to dichromate (19), and ethanel to an absorbing species (20).
- 3. The constituent is reduced to a lower oxidation state having a characteristic colour. Examples: molybdenum (VI) is reduced to a lower exidation state which has a blue colour (21), and gold(III) to a purple colloidal gold (22).

on the formation of heteropoly-acids; for example,
vanadium is determined as 5-molybdovanadic acid (23). Few
methods are based on the nitration of the reagent; for
example, nitrate by nitration of 2,6-xylenol (24). Others