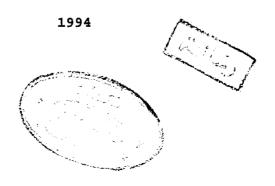

PSX P. P

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

BEHAVIOR OF REINFORCED CONCRETE SHEAR WALLS

BY
ASHRAF AHMED MOSTAFA ABU-KRACHA
B.Sc. CIVIL ENGINEERING (1986)
ASSIUT UNIVERSITY


A THESIS
SUBMITTED IN PARTIAL FULFILLMENT FOR THE
REQUIREMENTS OF THE DEGREE OF
MASTER OF SCIENCE
IN CIVIL ENGINEERING
DEPARTMENT OF STRUCTURAL ENGINEERING

51168

SUPERVISORS

Dr. MOSTAFA K.M. ZIDAN
Prof.in structural dept.
Faculty of engineering
Ain shams university

Dr. MOHAMED M.H. ATTABI
Assoc.Prof.in structural dept.
Faculty of engineering
Ain shams university

بسم الله الرجم المراكب المعلم المراكب المراكب

STATEMENT

This dissertation is submitted to Ain Shams
University for the degree of M.Sc. in Civil Engineering.

The work included in the thesis was carried out by the author in the Department of Structural Engineering, Ain Shams from october 1989 to december 1994.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Date

: 24/12/1994

Signature : And

Name

ASHRAF AHMRD MOSTARZ

BIOGRAPHY

Name : Ashraf Ahmed Moustafa Abu-Kraecha

Date of Birth : 15 / 1 / 1964

Place of Birth : Dairout - Assuit

Marital Status : Single

First University degree : B.Sc. of Civil Engineering

Assuit University - June 1986

General Appreciation : Very Good

Previous Experience :

- Working with German companies in constructing factories.

- Working in Eng./ Shams El-deen Ashraf Office in design and consulting works
- Working in National Authority for Drinking water and Sewerage
- Working in Architectural group office in execution supervision

Current Occupation :

Working in the French companies in erection of the second line of Cairo Metro.

Assignment // // Date : 24/12/94

ABSTRACT

A finite element analysis using isoparametric plane concrete element with a frame of steel bars on the perimeter is applied to analyze reinforced concrete models of shear walls. This model takes into account the behavior of concrete under biaxial stresses in the linear as well as in the nonlinear region. The simulation of concrete cracking through modification of stiffness properties of the affected elements and the representation of the aggregate interlock due to friction between the two sides of crack, have been considered by the proposed model.

The load is applied incrementally, and non-linearities due to material nonlinear behavior and cracking are solved through an iterative procedure. The load deflection curve, stress - strain curve, crack pattern and failure load obtained completely agree, with a great accuracy, with the available experimental results.

The validity of assumptions imposed throughout the analysis are proved by the ability of the model to predict, with great accuracy, the load deflection curve, the failure load and the crack pattern of reinforced concrete structures.

A computer program for linear and nonlinear analysis is prepared. The program has been tested and its accuracy has been demonstrated. Tests have been carried out on non-slender reinforced concrete model of shear wall (h/l = 2.4) with a low percentage of steel reinforcement.

Results obtained through models of parametric study on shear walls (h/l=4) with and without openings determined with the proposed model are compared. The research reveals the importance of putting steel reinforcement around the openings, especially inclined steel, to reduce crack propagation and increase safety.

But when applying this program on a real model, a high memory computer, with a high capacity, is needed with the use of the proposed model of concrete and steel elements which gives accurate results.

ACKNOWLEDGMENT

Great thanks are devoted to Prof.Dr. Moustafa K. M. Zidan for giving me the chance to make this research and for his valuable advice.

It has been an honour and a privilege to work with Dr. Mohamed M. H. Attabi ,and I wish to express my deepest and most sincere gratitude to him for his superb supervision, unfailing encouragements during the work,and for his patience in revising this thesis.

I would also like to express my appreciation to all my friends in National Authority for Tunnels for their valuable effort.

Last , but not least , I am grateful for the continued patience and encouragement of my family.

TABLE OF CONTENTS

	PAGE
ABSTRACT	i
ACKNOWLEDGMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	viii
NOMENCLATURE	хi
INTRODUCTION	xiv
CHAPTER 1 - REVIEW OF PREVIOUS FINITE ELEMENT MODELS	
 1 - Introduction. 2 - The infinite element analysis of reinforced concrete structures 3 - Linear and nonlinear analysis. 4 - Failure theories. 5 - Elasticity - Based models. 6 - Plasticity - Based models. 7 - Plastic - Fracturing models. 8 - Endochronic models. 9 - Concrete cracking. 1.10 - Analytical models for reinforced concrete structures. 	1 2 3 4 5 6 7 7 8 9
CHAPTER 2 - LINEAR ANALYSIS OF ISOPARAMETRIC PLAN STRESS FINITE ELEMENT FOR REINFORCED CONCRETE SIMULATION	
 2. 1 - Introduction. 2. 2 - The stiffness matrix of plane elements. 2. 3 - Choosing the element. 2. 4 - Stiffness matrix of isoparametric concrete element 4 nodes. 2. 5 - Stiffness matrix of isoparametric isolated steel bar with two nodes. 2. 6 - Stiffness matrix of the reinforced concrete element 4 nodes. 	
2. 7 - Stiffness matrix of isoparametric concrete element 8 nodes	27

۷.	8	-	Stiffness matrix of isoparametric isolated steel bar	
				27
2.	9	-	Stiffness matrix of the reinforced concrete element 8	
			nodes	31
CHZ	7P1	.EI	R 3 - ANALYSIS OF CONCRETE ELEMENT	
٦.	-		Turk was die sek i aus	33
				34
3.	3	-		35
3.	4	-		36
3.	5	-		37
				37
3.	7	-	Proposed numerical model of biaxial stress-strain	
				39
3.	7	-	1.Stress-strain relationship under tension - tension.	39
		-	2.Stress - strain relationship under tension -	
				42
		_	3.Stress - strain relationship under compression -	
				43
3.	8	_	Numerical formulation for the biaxial stress - strain	
	•			43
3.	9	_	Numerical formulation for the uniaxial stress - strain	
	_			49
ת ק	n	_	Representation of the cracks and crushing of concrete	
3.1	LO	-	Representation of the cracks and crushing of concrete	
			Representation of the cracks and crushing of concrete (Fracture of concrete)	50
			Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52
			Representation of the cracks and crushing of concrete (Fracture of concrete)	50
	LO	-	Representation of the cracks and crushing of concrete (Fracture of concrete)	50
3.1	LO	-	Representation of the cracks and crushing of concrete (Fracture of concrete)	50
3.1	LO	-	Representation of the cracks and crushing of concrete (Fracture of concrete)	50
3.1 CE 2	L0 APT	-	Representation of the cracks and crushing of concrete (Fracture of concrete)	50
3.1 CH2 4.	LO APT 1	- Pei	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52
3.1 CH2 4.	LO APT 1	- Pei	Representation of the cracks and crushing of concrete (Fracture of concrete)	50
3.1 CH2 4. 4.	1 2	- - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52
3.1 CH2 4. 4.	1 2	- - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	5 (5) 5 2
3.1 CH2 4. 4.	1 2 2	- - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52
3.1 CH2 4. 4.	1 2 2	- - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52 54
3.1 CE2 4. 4. 4.	1 2 2	- - - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52 54 55
3.1 CH2 4. 4. 4.	1 2 2 2	- - - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52 54 55
3.1 CH2 4. 4. 4.	1 2 2 2	- - - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52 54 55 56
3.1 CHA 4. 4. 4. 4.	1 2 2 2	- - - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52 54 55 56
3.1 CHA 4. 4. 4. 4.	1 2 2 2	- - - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52 54 55 56 58
3.13 CHA 4. 4. 4. 4. 4.	1 2 2 2 2	- - - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52 54 55 56 58
3.13 CHA 4. 4. 4. 4. 4.	1 2 2 2 2	- - - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52 54 55 56 58 59
3.1 CHA 4. 4. 4. 4. 4.	1 2 2 2 2 2	- - - - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52 54 55 56 58 59
3.1 CHA 4. 4. 4. 4. 4.	1 2 2 2 2 2	- - - - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52 54 55 56 58 58 59 60
3.1 CHA 4. 4. 4. 4. 4. 4.	1 2 2 2 2 2 2 2 2	- - - - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52 54 55 56 58 58 59 60
3.1 CHA 4. 4. 4. 4. 4. 4.	1 2 2 2 2 2 2 2 2	- - - - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52 54 55 56 58 58 59 60
3.1 CHA 4. 4. 4. 4. 4. 4.	1 2 2 2 2 2 2 2 2	- - - - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52 54 55 56 58 58 58 60 61
3.1 CHA 4. 4. 4. 4. 4. 4. 4.	1 2 2 2 2 2 2 2	- - - - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52 54 55 56 58 58 58 60 61
3.1 CHA 4. 4. 4. 4. 4. 4. 4.	1 2 2 2 2 2 2 2	- - - - -	Representation of the cracks and crushing of concrete (Fracture of concrete)	50 52 54 55 56 56 60 61

4. 4. 4.	3 3 3	- - -	1. C 2. U 3. C	onverge alculat tility alculat oncrete racture	ion of Na ion mode	of t ewto of t el u	the ton-Rathe named index	ota aphs nate	l u on m ria nsid	nbal meth l st dera	anc od. iff	ed : nes:	ford s ma	es. tri	x fo	 or	 .62
CH	AP!	re:	R 5	- THE	COMP	OTER	PRO	GRA	W								
555555555555555555555555555555555555555	2 2 2 3 4 5 6 7 8 9 10 11 21 31 4 15 15		Programmer of the state of the	oduction ram lib he plan ne dime numeric sequence ription results rication	rary eler nsion al so e of s	ment nal olut ope subr subr subr subr subr subr subr subr	stee ion rati outi outi outi outi outi outi outi ou	teclons ne nes ne ne nes ne	ar e hnic of " CF " SC " SC " R " R " R " A " A " A " A	the ting OUAD TALC IALS EDI	ent ma ID 1 R " 2 " S &	in g	JAD	ram 81 82 8 "	non	 	 .77 .77 .78 .78 .79 .80 .81 .82 .83 .83 .84 .85 .85 .92
CHZ	API	EF	2 6	- вена	VIOR	OF :	SHEA	R WZ	LL	Mod	els						
5. 5.	1	<u>-</u>	Verif compa	duction ication aring in	n of s re	the sult	proj	pose ith	π be ex	ath per:	emat imer	ica ital	l mo dai	odel ta d	l by		
5. 5.	2	- - -	1. Ma 2. Cc 3. Pa Param	l model terial ompariso ttern o etric s	propon of of rustudy	erit loa ptur on	ties ad-d re mode	 ispl els	 ace of	ment	 t cu	 irve all	 s w:	· · · · · · · · · · · · · · · · · · ·	and		 110 111 111
5. 5.	3	- - -	1. Mo 1.1 M 1.2 M	out oper dels of Model of Model of wall N	the She She To.2	e par ar v ar v	rame wall wall	tric wit wit	hou h h	udy t on ori:	oeni zont	ngs al	 (wa	 all ning	No.	1)	 114 115
5.	3	-	1.3 M	odel of	She	ar v	vall	wit	h v	ert:	ical	go .	eni	ıqs	W3		

ō iō iō iō iō	თ თ თ ო	- - - -	2. Loading procedure in the parametric study
CHZ	\P]	Œ	R 7 - CONCLUSION AND RECOMMENDATIONS
7	7	_	Introduction153
, . 7	2	_	Conclusions
7.	2	-	1. Conclusions related to the proposed model and
7.	2	_	computer program
			with openings \\
7.	3	-	Recommendations
			References157

- vii -

LIST OF TABLES

E	AGE
Stiffness matrix of reinforcement steel bars (4- nods).	26
Stiffness matrix of reinforcement steel bars (8- nods).	32
Equations of stresses and strains for concrete under	
biaxial stresses	73
A summary of the dimensions of the two test beams	92
Propertis of the two test beams	93
Types of reinforcement of the parametric study shear	
wall	117
Ultimate load test of the parametric study shear wall	
	Stiffness matrix of reinforcement steel bars (4- nods). Stiffness matrix of reinforcement steel bars (8- nods). Equations of stresses and strains for concrete under biaxial stresses

- viii -

LIST OF FIGURES

FIGUE	RE	PAGE
1.1	Typical concrete stress - strain curve in compression	
	(Winter and Nilson 1979 [58])	11
1.2	Analytical and Experimental failure envelope for	
	concrete (Buykozturk, 1977 [11])	11
2.1	Two - Dimensional isoparametric Element	17
	Rainforced concrete element	23
2.2b		23
2.3	Element of R.C. proposal	24
2.4	Steel bar - 3 nodes	27
3.1	Compression curve of concrete	35
3.2	Modulus E _c , E _s , E _t of concrete	36
3.3	Biaxial strength of concrete Results of Experimental	4.0
. .	Investigation. (from Ref. [28])	40
3.4	Stress - strain relationships of concrete under	4.0
	Biaxial compression (from Ref. [28])	40
3.5	Stress - strain releationships of concrete under	4-7
a c	Biaxial tension (from Ref. [28]	41
3.6	Stress - strain relationships of concrete under	47
יי ר	Combined tension and compression (from Ref. [28]) Stress - strain relationship of concrete in the	41
3.7		45
3.8	principal direction	49
3.0 3.9	Coordinate systems for cracked concrete element	52
3.3 4.1	Reinforced concrete element	56
4.2	Deformation of steel bar	57
4.3	Stress - strain curve for concrete, NEWTON - RAPHSON	57
T .J	Method	59
4.4	Stress - strain curve of steel bar, NEWTON _ RAPHSON	22
	Method	60
4.5	Unbalanced force of reinforced concrete element	62
4.6	Newton - Raphson method	63
4.7	Modefidied Newton - Raphson Method	66
5.1	Flow chart of Main program	86
5.2	Flow chart of the subroutine QUAD 1	87
5.3	Flow chart of the subroutine QUAD 2	88
5.4	Flow chart of the subroutine ANALC	89
5.5	Flow chart of the subroutine CRACK	90
5.6	Flow chart of the subroutine REDIS	91
5.7	Loading Arrangement and Instrumentation	98
5.7a	Cracked shape of beam " OAI " Ref.(8,9)	98
5.7b	Cracked shape of beam " AI " Ref.(8,9)	98
5.8	Cross sections of the two tested beams	99
5.9	Load - deflection curve at mid-span of beam " OAI "	99
5.10	The direction of crack propogation for the various	
	load increment of beam "OAI"	100

5 11	Longitudinal strain along of beam " OAI " span	101
5 12	Stress distribution in reinforcement of beam " OAI "	102
5 13	Load - deflection curve at mid-span of beam " AI "	102
5.13	The direction of crack propogation for the various	
5.14	The direction of clack propagation for the various	103
	load increment, of beam " AI "	105
5.15	Longitudinal stress - distribution in a sections at	- 04
	mid-span of beam " AI "	104
5.16	The shear stress distribution at rupture load at	
	mid-span of beam " AI "	104
5.17	The distribution of stirrup stresses at failure	
	of beam " AI "	105
5 12	Experimental deep beam (WT-3)	105
J.±0 E 10-	a Cracked shape of tested beeam Ref. {3}	106
J. 10	Load displacement curve of deep beam (WT-3) for the	
5.19	Load displacement curve of deep beam (WI 5, 101 one	106
	point at mid-span	107
5.20	Theortical propagation of cracks of deep beam (WT-3)	10,
5.21	Steel stress-load curve for bottom main reinforcement	100
	of deep beam (WT-3)	108
5.22	Longitudinal stress along center line AB for three	
	different load	108
6.1	Geometrical dimensions and cross section of the wall	112
6.2	Load - displacement curve at point "A" of shear wall.	112
6.3	Copmarison between cracks on model and experiment	113
6.4	Dist. of long. stress in the main outer Rft.of the	
· · ·	shear wall (theoritical analysis)	113
6.5	Geometrical dimension of solid shear wall	125
6.6	Geometrical dimension of horizontal openings shear wall	125
	Geometrical dimension of vertical openings shear wall.	125
6.7	Reinforcement of solid shear wall No.1	126
6.8	Reinforcement of Solid Shear wall No.1	126
6.9	Reinforcement of horizontal openings shear wall No.2	127
6.10	Reinforcement of vertical openings shear wall No.3	12/
6.11	Reinforcement of vertical openings shear wall with high	
	percentage wall No 4&5	127
6.12	Reinforcement of vertical openings shear wall with	
	diagonal and small percentage wall No.6	128
6.13	Reinforcement of vertical openings shear wall with	
	diagonal and high percentage wall No.7&8	128
6 14	Tensile stress in outer concrete elements at increment	
U. II	"5" of parametric study F=7.5t, walls No.(2,3)	129
<i>c</i> 15	Tensile force in outer steel elements of parametric	
ф. то	study vertical openings	130
	Tensile force in outer steel elements of parametric	
6.16		130
6.17	Tensile force in outer steel elements of parametric	133
	study vertical openings with diagonal steel	10-
6.18	Tensile force in outer steel elements of parametric	77-
	study vertical openings with high % and diagonal steel.	133
6.19	Comparison of tensile force in outer main steel at	
	Increment 6 , F=9t of parametric study	132