Plasma Amylin Concentration in Healthy Individuals and Patients with Insulin-Dependent Diabetes Mellitus

Thesis

Submitted for partial fulfillment of M.S. degree of clinical pathology

By

Hala Mahmoud Hafez

M.B.B.Ch

Under supervision of

Prof. Dr. Mahmoud Sabry Sallam Prof. of Clinical and Chemical Pathology Ain Shams University

Ass. Prof. Dr. Nadia Aly Abd El Sattar

Ass. Prof. of Clinical Pathology
Ain Shams university

Ass. Prof. Dr. Hoda Ahmed Gadalla

Ass. Prof. of Internal Medicine Ain shams university

Faculty of medicine 1996

5338u

My endless love, deepest and sincere gratitude and appreciation are due to my husband for the great effort he did, and the fine touches he added to the creation of this work.

Acknowledgment

First. I thank "God" for granting me the power to proceed and to accomplish this work.

I would like to express my sincere gratitude and appreciation to Prof. Dr. Mahmoud Sahry Sallam. Professor of Clinical and Chemical Pathology, Ain Shams University, for giving me the bonor to work under his supervision. and for providing me from his vast experience as well as for his utmost care.

I am most grateful to Prof. Dr. Nadia Ali Abd El Sattar, Professor of Clinical Pathology, Ain Shams University, for ber constant guidance and support in every step of this work.

Many thanks are due to Prof. Dr. Fadila Abmed Gadalla. Professor of Internal Medicine, Ain Shams University, for ber kind belp in the practical part of this work.

Many ibanks are also due to Ass. Prof. Dr. Hoda Abmed Gadalla. Assistant Professor of Internal Medicine, Ain Shams University, for her kind help in the practical part of this work.

I do appreciate the kind and active participation of Dr. Bereban Hamdy Tawfik, Lecturer of Clinical Pathology, Ain Shams University, in the practical part of this work.

Also. I would like to offer special thanks and appreciation to Dr. Mona Mohamed Zaki, Lecturer of Clinical Pathology, Ain Shams University, for her constant guidance, encouragement and great help she gave to accomplish this work in the proper way.

Thanks to Dr. Dalia Helmy Farag, Lecturer of Clinical Pathology. Ain Shams University, for providing be with the essential papers.

LIST OF CONTENTS

List of Abbreviations List of Tables	Page
List of Figure Introduction and Aim of the Work Review of Literature	1
Amylin:	2-30
t-Amylin Structure and Molecular Physiology.	2
II-Analysis of The Human Amylin Gene.	4
III-Species Specificity and Factors Determining	5
Amyloidogenesis.	
IV-Biosynthesis.	6
V-Metabolism.	7
VI-Actions of Amylin.	
A-Effect on Carbohydrate Metabolism.	9
1-Relation of Amylin to carbohydrate (CHO) absorption.	9
2-Effect of amylin on blood glucose level.	10
3- Relation of Amylin to insulin secretion and biosynthesis.	10
4-Relation of amylin to insulin resistance.	12
-Insulin resistance in obesity and essential	19
hypertension: could amylin be the possible missing link?.	
B-Effect of Amylin on Fat Metabolism.	21

C. Oshov Austinea at Austin	
C-Other Actions of Amylin.	21
VII-Use of Amylin in Therapy.	23
VIII-Amylin Blockers.	25
IX- Relation to Diabetes.	27
Diabetes Mellitus:	11-66
I-Introduction.	31
II-Classification of Diabetes Mellitus.	33
III-Insulin-Dependent Diabetes Mellitus (IDDM, Type I). 3	39
A-Clinical Picture of IDDM、 3	19
B-Clinical Course.	10
C-Pathogenesis of IDDM.	11
D-Pathophysiology of IDDM.	17
E-Diagnosis of IDDM 4	8
1-History and physical examination 4	8
2-laboratory diagnosis 4	8
F-Complications of IDDM. 5	6
Materials and Methods. 6	7
Results. 7	_
Discussion. 9 Summary and Conclusion. 1	
	03 05
Arabic Summary.	บบ

Abbreviations

1,5-AG :1,5-Anhydro-D-glucitol.

APS :Acetate plate sealer.

2,3-DPG: 2,3-Diphosphoglycerate.

cAMP : Cyclic adenosine monophosphate.

CGRP : Calcitonin gene-related peptide.

CHO :Carbohydrate.

DKA :Diabetic ketoacidosis.

DM :Diabetes mellitus.

FBG :Fasting blood glucose.

FBS: Fasting blood sugar.

GaP: Glucose-6-phosphate.

GFR : Glucose-6-phosphate.

GFR : Glomerular filtration rate.

GIT :Gastrointestinal tract.

GLP-1 :Glucagon-like peptide 1.

HGO :Hepatic glucose output.

HLA: Human leukocyte antigen.

HPLL :High performance liquid chromatography.

IAPP : Islet amyloid polypeptide.

IDDM: Insulin dependent diabetes mellitus.

IGT :Impaired glucose tolerance.

IVGTT :Intravenous glucose tolerance test.

NDDG :National Diabetes Data Group.

NIDDM: Non-insulin dependent diabetes mellitus.

OD :Optical density.

OGTT :Oral glucose tolerance test.

SA-HRP:Streptavidin-horse radish peroxidase.

List of Jigures

Figure (1·1): Structure of human islet amyloid polypeptide.	3
Figure (1-2): Comparison of amino-acid sequence of different	8
IAPPs.	
Figure (1-3): The lactic acid (Cori's) cycle.	16
Figure (4-1): Mean amylin level in patients and control groups.	91
Figure (4-2): Mean amylin level in patients with DKA and	92
control groups.	
Figure (4-3): Mean amylin level in patients without DKA	93
and control groups.	
Figure (4-4): Mean amylin level in patients with and patients	94
without DKA.	
Figure (4-5): Corellation between FBS and plasma amylin	95
level in patient's group.	
Figure (4-6): Corellation between duration of illness and	96
plasma amylin level in patient's group.	