
Comparative Analysis of Single Photon Emission Computed Tomography (SPECT) and Planar Thallium-201 Scintigraphy in The Diagnosis of Coronary Artery Disease

Thesis

Submitted for partial fulfillment of M.D. Degree in **Radiodiagnosis**

537 F

By
Randa Hossein Abdalla
M.B., B.Ch., M.Sc.

Supervisors

Prof. Dr. Zeinab Mohammad Abdallah

Professor and Head of Radiodiagnosis Department

Faculty of Medicine

Ain Shams University

Prof. Dr. Ahmed Talaat Khairy

Assist. Prof. of Radiodiagnosis

Faculty of Medicine

Ain Shams University

Faculty of Medicine Ain Shams University 1996

بِسَهِٰإِنَّهُ الْبَحْزَالَجَهَيْنِ

Acknowledgement

I wish to express my deepest thanks and supreme gratitude to Prof. Dr. Zeinab Mohammad Abdallah, Professor and Head of Radiodiagnosis Department, Faculty of Medicine, Ain Shams University, for her encouragement, judicious support and kind advice without which this work would not have been possible.

I also wish to thank Prof. Dr. Ahmed Talaat Khairy, Assistant Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his unfailing concern, sincere guidance and kindness that helped bringing this work forward.

Thanks are due to Dr. Mohamed Fareed Abdel Bari, Assistant Professor of Cardiology, Al-Azhar University, for brotherly assistance and valuable advice.

Finally, I would like to thank Dr. Hossam El-Ghetany, Lecturer of Cardiology, Ain Shams University, for his great help, and much needed tolerance.

LIST OF CONTENTS

	Page
1. Introduction and aim of the work	1
2. Anatomical considerations of coronary circulation	3
3. Pathophysiological aspects of myocardial perfusion	14
4. Radiopharmaceuticals used to study myocardial perfusion	23
5. Technical considerations in myocardial perfusion imaging	37
6. Image interpretation	50
7. Clinical application of TL-20l myocardial perfusion imaging	70
8. Material and Methods	76
9. Statistical analysis	84
10.Results	87
11.Illustrative cases	108
12.Discussion	141
13.Summary	157
14. Conclusion	161
15.References	163
16. Arabic Summary	

LIST OF FIGURES

Fig. No.	Title	Page
i	A and B left and right anterior oblique views of coronary arteries and their distribution	5
2	Blood flow in the left and right coronary arteries during various phases of cardiac cycle	16
3	Diagram of the epicardial, intramuscular, and subendocardial coronary vasculature	16
4	Time-activity curves for three myocardial regions after TL-20l injection at peak stress	27
5	Dipyridamole-thallium imaging technique	44
6	A. Anatomy of the heart as projected on planar views B. Coronary artery territories on three planar views	46
7	The vertical long axis (VLA), horizontal long axis (HLA) and short axis plane (SA) with the segments of the myocardium which they cut in SPECT imaging	49
8	Normal planar TL-20l image	52
9	Normal SPECT TL-20l image	55
10	A. Planar TL-20l images showing reversible defects at lateral and inferior wallsB. SPECT TL-20l image showing reversible defect at the inferior wall	58
11	A. Planar TL-201 images showing fixed defects at the septum, apex and anterior wall	60
	B. SPECT TL-20l image showing fixed defects at anterior and lateral walls	6l
12	SPECT TL-201 image showing inferolateral wall hibernation	62
13	Reconstruction of the polar plot or "bull's eye"	66

14	Polar map showing the mean distribution of thallium	67
	after exercise in normal subjects	
15	Polar plots of a patient with reversible inferolateral	69
	ischaemia	
1 6	Operational sheet	83
17	Planar and SPECT findings	91
18	Planar versus SPECT in patients with typical chest pain	98
19	Planar versus SPECT in patients with +ve exercise ECG	101
20	A. Anatomy of the heart as projected on planar views.	108
	B. The vertical long axis (VLA), horizontal long axis	
	(HLA) and short axis plane (SA)	
21	The color scale used to display all SPECT images in	109
	the illustrative cases	
22	Case I, Normal planar and SPECT images	111
23	Case II, Ischaemia of the basal segment of the inferior	114
	wall	
24	Case III, Ischaemia of the apex and basal segment of the inferior wall	118
25	Case IV, hibernation of a part of the anterior wall,	122
	infarction of the inferior wall, septum, and apex	
26	Case V, Mild ischaemia of the basal segments of the	126
	septum and inferior wall, apical infarction	
27	Case VI, Anterior, inferior and septal ischaemia	130
	(hibernation)	
28	Case VII, Septal ischaemia, hibernated basal segment	134
	of the inferior wall, infarction of apex, apical segment	
	of the inferior wall, and most of the anterior wall	
29	Case VIII, Regional reversible ischaemia of the apex,	138
	septum, anterior and inferior walls	

LIST OF TABLES

Tab. No.	Title	Page
ì	Age and sex prevalences, frequencies of risk factors,	88
	chest pain and previous myocardial infarction in all	
	patients	
2	Stress ECG findings in 69 patients	89
3	TL-201 imaging findings in all patients	90
4	Planar and SPECT TL-201 % sensitivity in detection of	92
	remote myocardial infarction	
5	Myocardial hibernation	93
6	Myocardial hibernation in patients and segments with	94
	incorrect diagnosis of myocardial infarction	
7	Extent and severity of perfusion defects	95
8	Symptoms versus planar findings	96
9	Symptoms versus SPECT findings	97
10	Stress ECG versus planar TL-20l findings	99
II	Stress ECG versus SPECT TL-201 findings	100
12	Results of coronary angiography versus TL-20l scans	102
13	Planar TL-201 results versus coronary angiography in	103
	determining the no. of diseased vessels	
14	SPECT TL-201 results versus coronary angiography in	104
	determining the no. of diseased vessels	
15	Planar and SPECT sensitivity according to the number	105
	of affected vessels	

16	True and false results of planar and SPECT scans in	106
	estimating the diseased arteries judged by coronary	
	angiography	
17	Medical decision making terms of planar and SPECT	107
	TL-20l scans in recognition of diseased arteries	
18	Sensitivity and specificity of scintigraphy in predicting	155
	the diseased coronary arteries	

LIST OF ABBREVIATIONS

 α alpha β - Beta

ATPase adenosine triphosphatase

A-V Atrioventricular

BATO Boronic acid adducts of technetium dioxime

complexes

CAD Coronary artery disease
CAG Coronary angiography

Co₂ Carbon dioxide

ECG Electrocardiogram

F¹⁸ isotope of fluorine

FDG Flurodeoxy glucose

F.N. False negativeF.P. False positive

g gram

H⁺ Hydrogen ion

HLA Horizontal long axis

hr. hour

I.V. InravenousK+ Potassium ion

Kev Kiloelectron volts

LAD Left anterior descending
LAO Left anterior oblique

LCX Left circumflex

mCi millicurie mg milligram

mg/kg milligram per kilogram body weight

min minute ml milliliter

N. Number

N¹³ isotope of nitrogen

Na Sodium ion

NH₃ Ammonia

N.S. Not significant

O¹⁵ isotope of oxygen

O₂ Oxygen molecule

P Probability

PET Positron emission tomography

PTCA Percutaneous transluminal coronary angioplasty

Rb rubidium

Rb⁸² isotope of rubidium

RCA Right coronary artery

S Second

S.D. Standard deviation

S-A Sinoatrial

SA Short axis

SPECT Single photon emission computed tomography

Tc99m Technetium 99m hexakis 2-methoxyisobutyl isonitrile

sestaMIBI

TL-20l Thallium-20l

T.N. True negative

TP True positive

VLA Vertical long axis