525 Y

COMPARATIVE ANATOMICAL STUDIES OF THE RESPIRATORY SYSTEM IN SOME EGYPTIAN REPTILES

By

RAGAA MAHMOUD AHMED EL-DEEB

B. Sc.

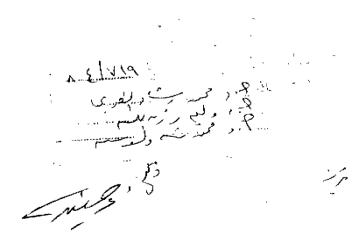
Department of Zoology Faculty of Science Ain Shams University 596.04 R.M

A THESIS

Submitted in Partial Fulfilment
For the Award of the Degree of
MASTER OF SCIENCE

181 3-

Faculty of Science Ain Shams University


1984

Besides the presented thesis, the student has successfully passed an examination in the following postgraduate courses:

- 1- Evolutionary Morphology,
- 2- Advanced Histology.
- 3- Histochemistry.
- 4- German Language.

Prof. Dr. M. GABR

Head of Zoology Department

BOARD OF SCIENTIFIC SUPERVISION

Late Prof. Dr. Hussein A. Ghorab.

Professor of Experimental Zoology, Faculty of Science, Ain Shams University.

Prof. Dr.W. Rizkalla.

Professor of Vertebrate Zoology, Faculty of Science,
Ain Shams University.

CONTENTS

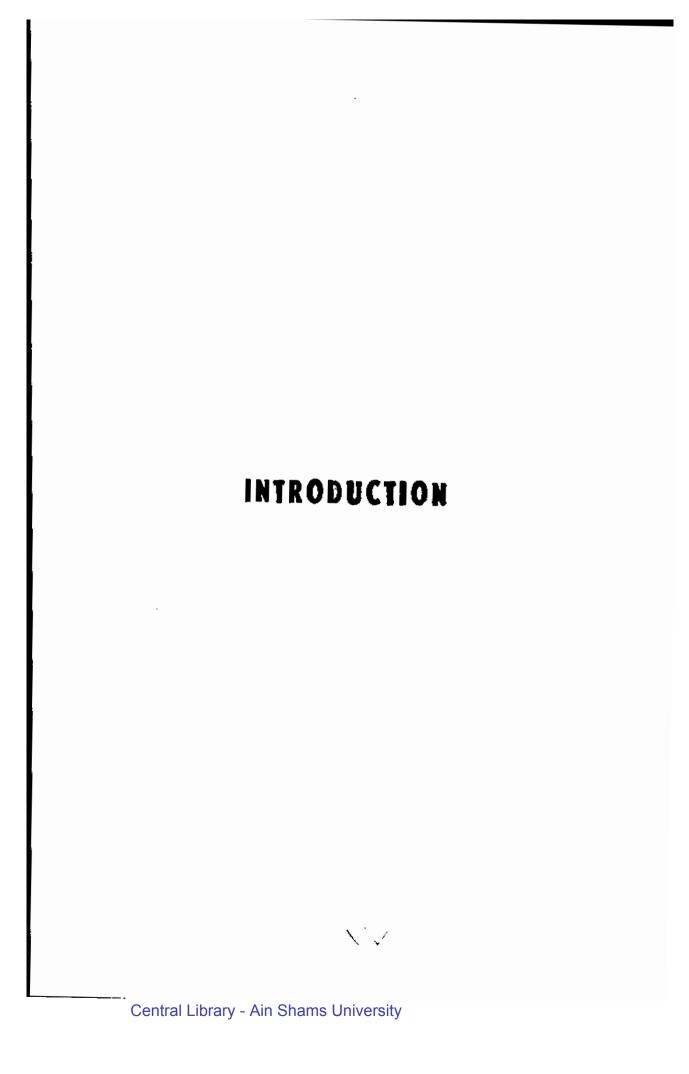
	Page				
ACKNOWLEDGMENT					
INTRODUCTION					
HISTORICAL REVIEW					
MATERIALS AND METHODS	19				
I. MATERIALS	19				
II. METHODS	20				
A- Gross anatomy	20				
B- Microscopic anatomy	21				
OBSERVATIONS	23				
CHAPTER 1					
DISTINCTIVE FEATURES OF THE SPECIES	23				
I. Chalcides ocellatus	23				
II. Eumeces schneideri	26				
III. Psammophis sibilans	28				
IV. Natrix tessellata	30				
CHAPTER II					
	40				
GROSS ANATOMY OF THE RESPIRATORY SYSTEM	40				
	40				
A. BUCCAL CAWITY	40				
B. LARYNX	41				
C. TRACHEA					
D. BRONCHI	42				
E. LUNGS	42				
F. HYOID APPARATUS	43				
II. Eumeces Schneideri	4 5				
A. BUCCAL CAVITY	45				
B. LARYNX	45				
C. TRACHEA	46				

			Pag
	D.	BRONCHI	47
	E.	LUNGS	47
	F.	HYOID APPARATUS	48
III.	Psa	mmophis sibilans	49
	Α.	BUCCAL CAVITY	49
	В.	LARYNX	49
	С.	TRACHEA	50
	D.	BRONCHUS	51
	Ε.	LUNG	51
	F.	HYOID APPARATUS	52
IV.	Nat:	rix tessellata	53
	A.	BUCCAL CAVITY	53
	В.	LARYNX	53
	C.	TRACHEA	54
	D.	BRONCHUS	54
	Ε.	LUNGS	55
	F.	HYOID APPARATUS	55
CHA.	PTER	III.	
MICRO	SCOP	IC ANATOMY OF THE RESPIRATORY SYSTEM	68
I.	Cha	lcides ocellatus	68
	Α.	NASAL CAVITY, NASAL GLAND AND JACOBSON'S	
		ORGAN	68
	в.	LARYNX	71
	c.	TRACHEA	73
	D.	BRONCHI	75
	Ε,	LUNGS	75
II.	Eum	eces schneideri	78
	Α.	NASAL CAVITY, NASAL GLAND AND JACOBSON'S	
		ORGAN	78
	В.	LARYNX	80
	C.	TRACHEA	81
	D.	BRONCHI	82
	Ε.	LUNGS	82

A. NASAL CAVITY, NASAL GLAND AND JACOBSON'S ORGAN. B. LARYNX. C. TRACHEA. D. BRONCHUS. E. LUNG. IV. Natrix tessellata. A. NASAL CAVITY, NASAL GLAND AND JACOBSON'S ORGAN. B. LARYNX. C. TRACHEA AND TRACHEAL LUNG. D. BRONCHUS E. LUNGS. SUMMARY. 154				Page
ORGAN. 83 B. LARYNX. 3 83 C. TRACHEA. 86 D. BRONCHUS. 85 E. LUNG. 87 IV. Natrix tessellata. 96 A. NASAL CAVITY, NASAL GLAND AND JACOBSON'S ORGAN. 96 B. LARYNX. 99 C. TRACHEA AND TRACHEAL LUNG. 99 D. BRONCHUS 99 E. LUNGS. 99 LIST OF ABBREVIATIONS. 133 DISCUSSION. 136 SUMMARY. 154	III.	Psa	mmophis sibilans	83
B. LARYNX		A.	NASAL CAVITY, NASAL GLAND AND JACOBSON'S	
C. TRACHEA			ORGAN	83
D. BRONCHUS. 88 E. LUNG. 88 IV. Natrix tessellata. 90 A. NASAL CAVITY, NASAL GLAND AND JACOBSON'S ORGAN. 90 B. LARYNX. 99 C. TRACHEA AND TRACHEAL LUNG. 99 D. BRONCHUS 99 E. LUNGS. 99 LIST OF ABBREVIATIONS. 135 DISCUSSION. 136 SUMMARY. 154		В.	LARYNX	8 85
E. LUNG		C.	TRACHEA	87
IV. Natrix tessellata		D.	BRONCHUS	88
A. NASAL CAVITY, NASAL GLAND AND JACOBSON'S ORGAN. 96 B. LARYNX. 97 C. TRACHEA AND TRACHEAL LUNG. 97 D. BRONCHUS 97 E. LUNGS. 97 LIST OF ABBREVIATIONS. 136 SUMMARY. 154		Ε.	LUNG	88
A. NASAL CAVITY, NASAL GLAND AND JACOBSON'S ORGAN. 96 B. LARYNX. 97 C. TRACHEA AND TRACHEAL LUNG. 97 D. BRONCHUS 97 E. LUNGS. 97 LIST OF ABBREVIATIONS. 136 SUMMARY. 154	TV.	Nat	rix tessellata	90
B. LARYNX 93 C. TRACHEA AND TRACHEAL LUNG 93 D. BRONCHUS 93 E. LUNGS 93 LIST OF ABBREVIATIONS 135 DISCUSSION 136 SUMMARY 154				
C. TRACHEA AND TRACHEAL LUNG. 95 D. BRONCHUS 95 E. LUNGS. 95 LIST OF ABBREVIATIONS 135 DISCUSSION 136 SUMMARY 154		В.	•	
D. BRONCHUS 9: E. LUNGS 9: LIST OF ABBREVIATIONS 13: DISCUSSION 136 SUMMARY 154		c.	• • • • • • • • • • • • • • • • • • • •	
E. LUNGS	'	D.		
LIST OF ABBREVIATIONS		Ε.		
DISCUSSION				
SUMMARY	LIST	OF A	BBREVIATIONS	131
SUMMARY	DIOGU		···	126
BIBLIOGRAPHY 157	SUMMAE	RΥ		154
	BIBLIC	GRAE	РНҮ	157
ADADTO SHIMADY			•	

ACKNOWLEDGMENT

I wish to express my deep gratitude to late Dr. H.A.

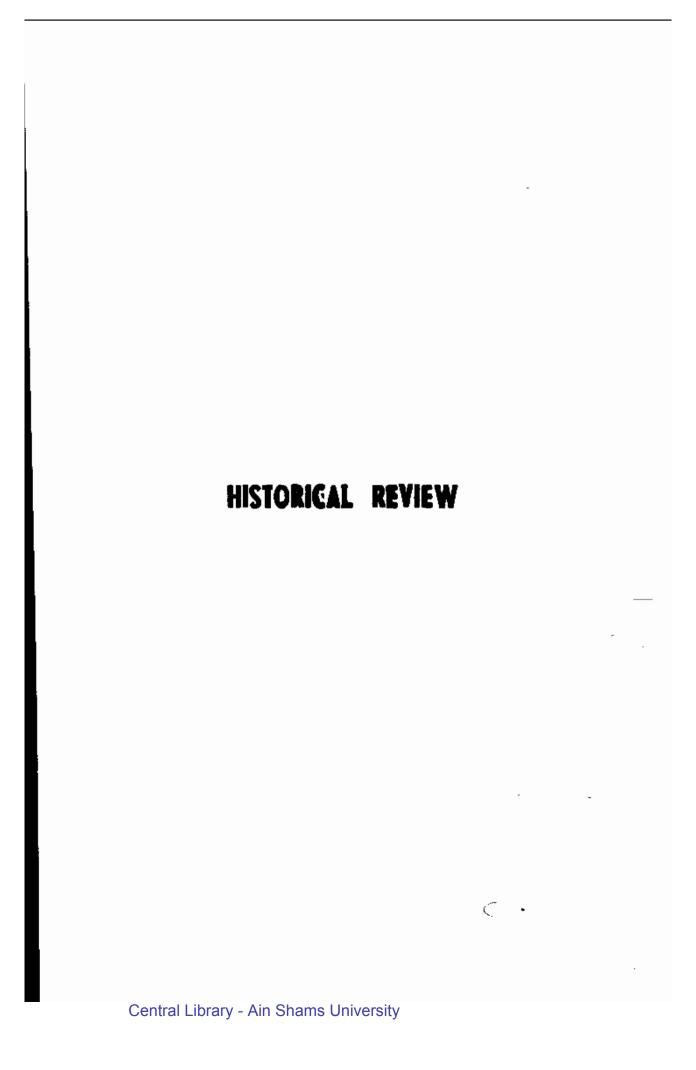

GHORAB, Professor of Experimental Zoology, Faculty of Science,

Ain Shams University, for suggesting the topic of investigation,

his sincere encouragement and reading the manuscript:

I am greatly indebted to Dr. W. RIZKALLA, Professor of Vertebrate Zoology, Faculty of Science, Ain Shams University, for his active supervision, reading the manuscript and his constructive criticism.

Finally I am grateful to prof. M. GABR, Head of Zoology Department, Faculty of Science, Ain Shams University, and to all the staff members of the Department, especially Dr. S.S. SOLIMAN, Lecturer of Zoology, for their kind help through the course of the work.



INTRODUCTION

Class Reptilia is one of the largest and . important groups of vertebrates. Reptiles are descendants of the early amphibians and were the dominant animals of the earth during the Mesozoic era. They gave rise to the two classes of vertebrate animals that have internal temperature control , the endothermal Aves and Mammalia. Although reptiles have lost the dominant position they held during the Mesozoic era, yet they are still much more numerous than amphibians. The reptiles which are still alive belong to only four out of the seventeen orders of all reptiles extinct and alive. Order Squamata is the largest and most successful group of this class, as it comprises about 3,000 species which are widespread in tropical and subtropical regions allover the world. Some of these species are aquatic, others are arboreal or burrowing and most of them are terrestrial.

The work on the reptilian respiratory system is rather incomplete and fragmentary. Besides, it seems that no integrant work has been done on the respiratory system of the Egyptian reptiles. Therefore, the present work is carried out to give a detailed account of

the gross and microscopic anatomy of the respiratory system of some local lizards (lacertilians) and snakes (ophidians). These species are <u>Chalcides ocellatus</u>, <u>Eumeces schneideri</u>, <u>Psammophis sibilans</u> and <u>Natrix tessellata</u>. <u>Chalcides ocellatus</u> and <u>Psammophis sibilans</u> are easily obtainable and thus they are used as laboratory animals in our universities for studying the reptilian anatomical organization.

HISTORICAL REVIEW

The study of the respiratory system of reptiles has drawn the attention of many investigators since a long time.

Wright (1883) described the masal cavity,

Jacobson's organ and lachrymal duct in <u>Tropidonotus</u>.

Cope (1894) examined many species of snakes and gave detailed notes on the characters of their lungs. He found that some snakes (e.g., Rhachiodon scaber) possess only a single functional lung, whereas other ones (e.g., Natrix vulgaris and Heterodon) have a rudimentary lung, in addition to the functional one. Moreover, few snakes (e.g., Typhlops) possess a tracheal lung, in addition to the functional and rudimentary ones.

Butler (1895) observed that the functional lung of <u>Tropidonotus natrix</u> and <u>Zamenis gemonensis</u> is the right lung and there is no trace of the left one. He also found that in all Amphisbaenidae (except <u>Trogonophis wiegmanni</u> and <u>Pachycalamus brevis</u>) the right lung is rudimentary or absent altogether, while

in these two species the right lung is distinctly smaller than the left one. This author also concluded that in all lizards, including the snake-like ones, if one lung is smaller it is the left one.

Beddard (1903) compared between Naja and Ophiophagus as regards their tracheae and lungs. He found that the vascular or pulmonary part of the lung and consequently its respiratory region is proportionately larger in Ophiophagus than in Naja. Moreover, the dorsal tracheal membrane of Ophiophagus is perforated at regular intervals by oval foramina which lead to air sacs. This author could ascertain that there is nothing precisely similar to such a structure in other snakes and stated that it may be similar to the tracheal pouch of the emu.

Beddard (1909) described the bronchi and lungs in <u>Boa occidentalis</u> and <u>B. madagascariensis</u>.

In the former snake, the bronchus extends for a long distance into the interior of the lung, while in the latter one the intrapulmonary bronchus is very short.

Thompson (1913) described the trachea and lung in many species of snakes belonging to three

families (Hydrophidae, Acrochordinae and Viperidae).

In Hydrophidae and Acrochordinae, the tracheal lung is developed so as to give buoyancy and to enable these sea-snakes to remain sometime beneath the surface of water. In Viperidae, however, the tracheal lung results from an indirect and different reason. This is explained by the fact that the elaboration of venom in the vipers requires a large liver and as a rule vipers have short thick bodies and conseaugently the liver invades the region just caudad of the heart. As a result of this condition, the crowded pulmonary tissue looks for the direction of the least resistance namely, along the tracheal membrane to form the tracheal lung.

Ogawa (1920) studied the respiratory epithelium in Tetrapoda. He clarified that the respiratory epithelium of the reptilian lung [e.g., Clemmys japonicus (tortoise), Gecko japonicus (lizard) and Elaphe quadrivirgata (s.nake)] is made up of two kinds of cells, large flat cells and cuboidal ones.

Gnanamuthu (1935) studied the hyoid apparatus and tongue of fifteen reptilian species. He came to the conclusion that the hyoid apparatus and the muscles