STUDIES ON THE BIOCHEMICAL COMPOSITION OF FISH FLESH AND BLOOD CHARACTERISTICS OF SOME FISHES LIVING IN SOME POLLUTED

AREAS IN THE RIVER NILE

THESIS

Sumbmitted for the partial fulfillment of the Master Degree in Biochemistry

By

Nahed Shafik Gad Eisa

B.Sc.(Biochemistry) Ain Shams University

National Institute of Oceanography and Fisheries

Ministry of Scientific Research and Technology

31211

Supervised by

Prof. Dr. Eisa Ahmed Eisa

Prof. Dr.

Mahmoud El-Sabbagh

Professor of Biochemistry

Faculty of Science

Ain Shams University

Professor of Biochemistry

Faculty of Science

Ain Shams University

Prof. Dr. Hamed Hamed Saleh

Head of Fresh water and lakes Department

National Institute of oceanography and fisheries

Ministry of Scientific Researsh and Technology

Faculty of Science
Ain Shams University
Biochemistry Department
1994

STUDIES ON THE BIOCHEMICAL COMPOSITION OF FISH FLESH AND BLOOD CHARACTERISTICS OF SOME FISHES LIVING IN SOME POLLUTED AREAS IN THE RIVER NILE

THESIS

Sumbmitted for the partial fulfillment of the Master Degree in Biochemistry

By
Nahed Shafik Gad Eisa

B.Sc.(Biochemistry) Ain Shams University

National Institute of Oceanography and Fisheries

Ministry of Scientific Research and Technology

Supervised by

Prof. Dr.
Eisa Ahmed Eisa

Prof. Dr.

Mahmoud El-Sabbagh

Professor of Biochemistry

Faculty of Science

Ain Shams University

Professor of Biochemistry

Faculty of Science

Ain Shams University

M. Elsek

Prof. Dr.

Hamed Hamed Saleh

Head of Fresh water and lakes Department

National Institute of oceanography and fisheries

Ministry of Scientific Research and Technology

Faculty of Science

H. H.

Ain Shams University

Biochemistry Department

1994

ACKNOWLEDGMENTS

I would like to express my deepest gratitude and appreciation to professor. Dr. Eisa Ahmed Eisa prof. of biochemistry Faculty of Science, Ain Shams University for his supervision and guidance.

My thanks and appreciation to professor. Dr. Mahmoud El-Sabbagh. prof. of biochemistry Faculty of Science Ain Shams University for his guidance and supervision.

I wish also to express my deepest gratitude and appreciation to professor Dr. Hamed. Hamed Saleh head of Fresh Water and Lakes Department. National Institute of Oceanography and Fisheries Ministry of Scientific Research and Technology for his supervision and help.

My cardial thanks to Dr. Hala M.El-Dessouky lecturer of biochemistry Faculty of Science Ain Shams University for her current helpfull and guidance throughout all this work.

My deepest gratitude and appreciation to professor Dr. Waheb labib prof. of Rearing Fish National Institute of Oceanography and Fisheries for facilitating this work to be accomplished.

More over, I wish to express my deepest appreciation to all members of Inland Water and Fish Culture Branch of the National Institute of Oceanography and Fisheries manily in Barrage Fish Farm.

127

ABSTRACT

The present study includes the effect of different concentrations of industrial waste water from (Iron - Steel Factory and Soap - Oil Factory) which drained directly in the River Nile and its branches on biochemical composition and blood characteristics of two species of fresh water fishes (Tilapia nilotica and Clarias lazera). The results of biochemical analysis of fish flesh after 1,2 and 3 weeks of exposure to the industrial waste water from the two factories showed a disturbance in the main componants of fish flesh (protein - fat - ash and water contents) in both species of fishes. Also the results of biochemical analysis of fish blood showed a significant increase in serum total proteins, total lipids, s. GOT, s. GPT, s. alkaline phosphatase, urea and creatinine. Serum glucose levels also showed a significant increase in both species of fishes.

CONTENTS

	page
Aim of the work	i
list of abbreviations	ii
I'Introduction	1
II Material and Methods	17
A- Animals used	17
B- Industrial waste water used	18
C- Blood sampling	18
D- Tissue sampling	19
E- The physico-chemical analysis of industrial waste water.	19
Determination of LC ₅₀	25.
F- Biochemical analysis.	26
1- Extraction of proteins from muscle tissues	26
2- Extraction of lipids from muscle tissues	26
3- Determination of protein content in tissues	26
4- Determination of lipids content in tissues.	27
5- Estimation of serum total proteins.	28
6- Estimation of serum Albumin.	29
7- Estimation of serum total lipids.	29
8- Estimation of serum cholesterol level	30
9- Estimation of serum transaminases (S.GOT and S.GPT)	30
10- Determination of Alkaline phosphatase in serum	31
11- Determination of urea in serum	33

	12- Determination of creatinine in serum	33
	13- Estimation of serum Glucose	36
	14- Determination of Ash content of tissues	39
	15- Determination of water content of tissues	39
	statistical analysis	40
-	III Results:	
,	- Physico-chemical analysis of industrial waste water	42
	- Changes in behavior of Tilapia nilotice and Clarias lazera	
	due to expos-ure to different concentration of industrial	
	waste water	44
	- Part I : Results related to industrial waste water from Iron	
	Steel Factory	45
	- Part II: Results related to industrial waste water from	
	Soap-Oil Factory	96
	IV . Discussion :	
	Part I: Discussion related to Iron - Steel Factory	147
	Part II: Discussion related to Soap-Oil Factory	157
	-V : Summary	167
	VI : References	173.
	VII : Arabic Summary	

LIST OF TABLES

List of tables related to industrial waste water from Iron-Steel Factory:

	Page
Table (1): Physico - chemical analysis of water from River Nile unpolluted	
and polluted	43
Table (2): The percentage of survival rate	46
Table (3): Effect of industrial waste water on total proteins level of skeletal	.,
muscle of Tilapia nilotica and Clarias lazera	49
Table (4): Effect of industrial waste water on total Lipids level of skeletal	
muscle of Tilapia nilotica and Clarias lazera	52
Table (5): Effect of industrial waste water on serum total proteins	55
Table (6): Effect of industrial waste water on serum Albumin	58
Table (7): Effect of industrial waste water on serum Globulin	61
Table (8): Effect of industrial waste water on A/G Ratio	64
Table (9): Effect of industrial waste water on serum total Lipids	67
Table (10): Effect of industrial waste water on serum cholesterol level	70
Table (11): Effect of industrial waste water on serum GOT	73
Table (12): Effect of industrial waste water on serum GPT	76
Table (13): Effect of industrial waste water on serum Alkaline phosphatase	79
Table (14): Effect of industrial waste water on serum Urea	82
Table (15): Effect of industrial waste water on serum Creatinine	85
Table (16): Effect of industrial waste water on serum Glucose	88
Table (17): Effect of industrial waste water on skeletal muscle water content	91
Table (18): Effect of industrial waste water on ash content of skeletal muscle	

List of tables related to industrial waste water from Soap-Oil Factory:	
Table (19): The percentage of survival rate	97
Table (20): Effect of industrial waste water on total proteins level of skeletal	
muscle of Tilapia nilotica and Clarias lazera	100
Table (21): Effect of industrial waste water on total Lipids level of skeletal	
muscle of Tilapia nilotica and Clarias lazera	103
Table (22): Effect of industrial waste water on serum total proteins	106
Table (23): Effect of industrial waste water on serum Albumin	109
Table (24): Effect of industrial waste water on serum Globulin	112
Table (25): Effect of industrial waste water on A/G Ratio	115
Table (26): Effect of industrial waste water on serum total Lipids	118
Table (27): Effect of industrial waste water on serum cholesterol level	121
Table (28): Effect of industrial waste water on serum GOT	124
Table (29): Effect of industrial waste water on serum GPT	127
Table (30): Effect of industrial waste water on serum Alkaline phosphatase	130
Table (31): Effect of industrial waste water on serum Urea	133
Table (32): Effect of industrial waste water on serum Creatinine	136
Table (33): Effect of industrial waste water on serum Glucose	139
Table (34): Effect of industrial waste water on skeletal muscle water content	142
Table (35): Effect of industrial waste water on ash content of skeletal muscle	145

LIST OF FIGURES

List of figures related to industrial waste water from Iron-Steel Factory:

	Page
Fig (1): The percentage of survival rate of Tilapia nilotica and Clarias lazera	47
Fig (2): Effect of industrial waste water on total proteins level of skeletal	
muscle	50
Fig (3): Effect of industrial waste water on total Lipids level of skeletal	
muscle of Tilapia nilotica and Clarias lazera	53
Fig (4): Effect of industrial waste water on serum total proteins	56
Fig (5): Effect of industrial waste water on serum Albumin	59
Fig (6): Effect of industrial waste water on serum Globulin	62
Fig (7): Effect of industrial waste water on A/G Ratio	65
Fig (8): Effect of industrial waste water on serum total Lipids	68
Fig (9): Effect of industrial waste water on serum cholesterol level	71
Fig (10): Effect of industrial waste water on serum GOT	74
Fig (11): Effect of industrial waste water on serum GPT	77
Fig (12): Effect of industrial waste water on serum Alkaline phosphatase	80
Fig (13): Effect of industrial waste water on serum Urea	83
Fig (14): Effect of industrial waste water on serum Creatinine	86
Fig (15): Effect of industrial waste water on serum Glucose	89
Fig (16): Effect of industrial waste water on skeletal muscle water content	92
Fig (17): Effect of industrial waste water on ash content of skeletal muscle	95

List of figures related to industrial waste water from Soap-Oil Factory:	
Fig (18): The percentage of survival rate	98
Fig (19): Effect of industrial waste water on total proteins level of skeletal	
muscle of Tilapia nilotica and Clarias lazera	101
Fig (20): Effect of industrial waste water on total Lipids level of skeletal	
muscle of Tilapia nilotica and Clarias lazera	104
Fig (21): Effect of industrial waste water on serum total proteins	107
Fig (22): Effect of industrial waste water on serum Albumin	110
Fig (23): Effect of industrial waste water on serum Globulin	113
Fig (24): Effect of industrial waste water on A/G Ratio	116
Fig (25): Effect of industrial waste water on serum total Lipids	119
Fig (26): Effect of industrial waste water on serum cholesterol level	122
Fig (27): Effect of industrial waste water on serum GOT	125
Fig (28): Effect of industrial waste water on serum GPT	128
Fig (29): Effect of industrial waste water on serum Alkaline phosphatase	131
Fig (30): Effect of industrial waste water on serum Urea	134
Fig (31): Effect of industrial waste water on serum Creatinine	137
Fig (32): Effect of industrial waste water on serum Glucose	140
Fig (33): Effect of industrial waste water on skeletal muscle water content	143
Fig (34): Effect of industrial waste water on ash content of skeletal muscle	146

AIM OF THE WORK

Within recent years some areas of River Nile have become polluted by a variety of substances that include, heavy metals, a griculture chemicals sewage and industrial wastes. So the present work was aimed to study two main problems: Firstly, what are the effect of some industrial waste water drained in the River Nile in the vicinity of Cairo from two important factories in Egypt (Iron-Steel Factory and Soap-Oil Factory) on survival, behaviour, biochemical changes on blood and approximat composition (Protein - Fat - ash-water content) of the body of the fresh water fishes Tilapia nilotica and Clarias Lazera? Secondry, in what extent is the possible danger on man, who consumes these two industrial wastes contaminated fishes as a source of protein food mostly utilized by majority of Egyption peoples.?

ABBREVIATIONS

B.O.D : Biochemical oxygem demand.

C.O.D : Chemical oxygen demand.

Co : Degree centigrate.

C.L : Clarias lazera.

Conc : Concentration.

dl : 100 ml

D.O : Dissolved oxygen

D.W : Distil water

g : gram

L : litre.

LC50 : lethal concentration50.

min : Minute.

mg : Milligram

N.S : Not Significant.

S.E : Standard error.

S.GOT. : Serum glutamate oxaloacetate transaminase.

S.GPT. : Serum glutamate pyruvate transaminase.

St. : Standard.

T.n : Tilapia nilotica.

U mol. : Micromol.

Wt. : Weight.

% : Percent.

l. :		
	I INTRODUCTION	
·		

Introduction

Pollution is deemed one of the most important problems that emerged in our civilized world in Egypt. The problem of environmental pollution has received considerable attention of both the public and official bodies in the present decade. In recent years public alarm raised about the pollutions of the River Nile and other native water sources. Waste products of many factories e.g soap-oil, textile, papers, plastic, iron-steel, petroleum and food industries are the main sources of water pollution. These are either directly pumped or seep into the waste ways. Water pollution is very dangerous not only for the damage it causes to the environment, but also for the fatel effect, it causes to all living organisms.

The principal hazard to public health from polluted stream is the presence of pathogenic bacteria from domestic sewage. In rare cases the presence of acids and other industrial wastes in streams has been beneficial because they serve to inactivate pathogenic and other bacteria resulting from the disposal of untreated sewage. (Windle, Taylar, 1978.)

Bilharziasis one of the most dangerous disease in a developing areas, in which polluted water plays a major role in its transmission (Southgate, et al., 1976) and (Benarde, 1970.) Danger to