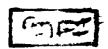
GEOLOGICAL AND SEDIMENTOLOGICAL STUDIES OF OLIGO-MIOCENE SECTIONS IN ABU ZENIMA AREA AND OCTOBER FIELD SINAI, EGYPT.

A. THESIS

Submitted in Partial Fulfilment for the Requirements of the

MASTER DEGREE OF SCIENCE


551.78 B. A IN GEOLOGY

BY

BADR ABASS KHALIL

(B. SC. Geology)

19010

Department of Geology
FACULTY OF SCIENCE
AIN SHAMS UNIVERSITY

CAIRS - EGYPT

1984

Now.

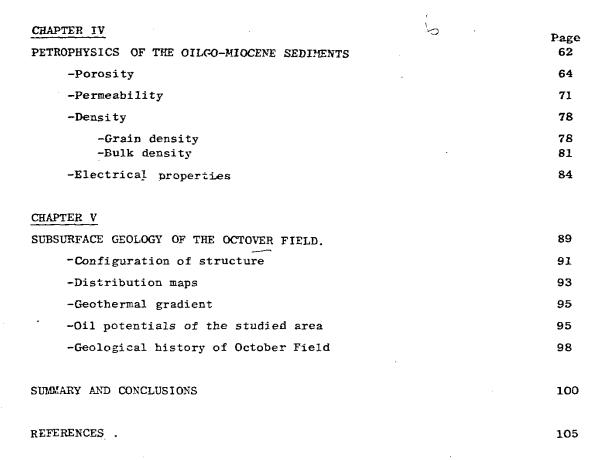
NOTE

The present thesis is submitted from Badr Abass Khalil to Ain Shams University in partial fulfilment of the requirements for the Degree of Master of Science in Geology .

Beside the research work materialized in this thesis, the Candidate has attended nine of the post-graduate courses during one year in the following topics:

- _ Mapping and sampling
- _ Applied Geophysics.
- Lab. Techniques
- Petrophysics
- Geophysical prospecting
- Lithostratigraphy
- Geotectonics
- Advanced structural Geology
- Structural still of Egypt and Middle East .

He has successfully passed the final examination of these courses . In addition, the student has successfully passed the German Language examination in Feb.,1982 .


Prof. Dr. M.A. Bassiouny

Head, Department of Geology

TABLE OF CONTENTS

LIST OF FIGURES	Page i
LIST OF TABLES	v
· ·	vi
ACKNOWLEDGEMENTS	vi
ABSTRACT	
INTRODUCTION	1
CHAPTER I	
REGIONAL STRATIGRAPHY OF THE GULF OF SUEZ WITH REFERENCE TO OCTOBER AREA	4
- General	4
- Paleozoic Era	5
- Mesozoic Era	7
- Cenozoic Era	13
CHAPTER II	
GRAIN SIZE ANALYSIS	30
- Mechanical grain size analysis	31
- Graphic representation of size distribution data	31
- Results and discussions	32
- The relation between the grain size parameters and their	
significance	38
- Environment of deposition	39
CHAPTER III	
PETROLOGY OF THE OLIGO-MIOCENE SEDIMENTS IN OCTOBER ABU ZENIMA AREA	41
- Field and hand description of surface samples	41
- Thin section description	44
- Modal analysis of sandstones	58
D. St. Olive Miceens rooks in October-Abu Zenima srea	59

LIST OF FIGURES

rigure	<u>es</u>	After Page
1-	Location Map .	1
2-	Surface Geologic Map of the Gulf of Suez area.	3
3-	Stratigraphic column of the Gulf of Suez.	4
4-	Classification of Nukhul Formation in Wadi Nukhul and West	
	Central Sinai.	17
5-	Composite section of Nukhul Formation	18
6 –	Isopach map "Mukhul Formation"	18
7-	Shoab Ali Mbr. Isopach map	18
8-	Total Sand Isolith "Nukhul Formation"	20
9-	Histograms and cumulative curves for the studied samples	3 Ì
10-	Histograms and cumulative curves for the studied samples	31
	Histograms and cumulative curves for the studied samples	31
	Cumulative probability curves Group I	31
13-	Cumulative probability curves Group II	31
14-	Cumulative probability curves Group III	31
15-	Cumulative probability curves Group IV	31
16-	Cumulative probability curves Group V	31
17-	Bivariant plot of mean size versus Inclusive Standard Deviation	on 38
	Bivariant plot of Skewness versus Mean Size	39
19-	Bivariant plot of Kurtosis versus Inclusive Standard Deviation	ı 39
	Bivariant plot of Kurtosis versus Skewness Standard Deviation	39
	Wadi Tayiba surface section	41
22-	Abundant carbonate and calcareous siltstone laminae within	
	sandstone layer.	42
23-	Highly cherty pebbles within sandstone beds	42
	Horizontal burrows and local deformation	42
25-	Vertical burrows cutting cross-bedding planes	42
	Cross bedding and graded bedding in the sandstones	49

27- Sandstone and pebbly layers intercalations	łZ
28- Differential weathering	43
29- Ferregenous and mangneferous sandstone	43
30- Boulder bed with a clear wedge shape	43
30- Boulder beds in the studied section (Abu Zenima area)	43
31- Boulder beds in the studied boots	44
32- Highly boulder bed within the sandstones	44
33- Weathered basaltic boulders in the sandstones	46
34- Photomicrograph of chert Pebbles with silt	46
35- Photomicrograph of chert and silica	46
36- Photomicrograph of Quartz geodes	46
37- Photomicrograph of Carbonate fossil fragment	47
38- Photomicrograph of basaltic pebble with Porphyritic texture	47
39- Photomicrograph of basaltic pebble with porphyritic texture	47
40- Photomicrograph of angular rock fragment pebble	47
41- Photomicrograph of interlocking quartz grains	49
42- Photomicrograph of quartz overgrowth	49
43- Photomicrograph of composite quartz grains.	52
44- Photomicrograph of wavy extinction	
45- Photomicrograph of feldspars	52
46- Photomicrograph of angular and subangular chert grains	53
47- Photomicrograph of rounded chert grains	53
48- Photomicrograph of abundant micrtic limestone	53
49- Photomicrograph of silica cement	53
50- Photomicrograph of silica and calcite cement	53
51- Photomicrograph of glauconite grains	53
52- Photomicrograph of reworked limestone	54
53- Photomicrograph of reworked fossil fragment	54
54- Photomicrograph of calcarenite	58
54- Photomicrograph of diagenetic chlorite and muscovite 55- Photomicrograph of diagenetic chlorite and muscovite	58
55- Photomicrograph of diageneers seems of Pettijohn et.al (1972) 56- Classification of sandstone according to Pettijohn et.al (1972)	58
the studied sandstone samples	58
en Classification of the Studied Sandscond	

58- Photor	micrograph of moulded and squeshed clay	63
59- Photor	nicrograph of deformation of mica	6:
60- Porosi	ity histogram and frequency polygon	67
61- Cumula	ative frequency polygon for the studied samples.	67
62- Cumula	ative frequency distribution of porosity	69
63- Porosi	ty versus the clay content	70
64- Porosi	ity versus the mean grain size	71
65- Permea	ability histogram and frequency polygon	75
66- Cumula	ative frequency polygon	75
67- Probab	oility distribution for the studied samples.	75
68- Permea	ability versus the Mean Size	76
69- Permea	ability versus the fine content:	77
70- Permea	bility versus porosity (Lab. measurments)	77
71- Histog	ram and frequency distribution of the grain density	80
72- Probab	ility frequency distribution of grain density	80
73- Grain	density versus the mean size of the studied samples.	80
74- Grain	density versus porosity of the studied samples.	81
75- Grain	density versus permeability of the studied samples.	81
76- Cumula	tive frequancy for the Bulk density	83
77- Bulk đ	ensity versus porosity (Lab. measurments)	83
78- Bulk d	ensity versus Neutron porosity (GS 173-2)	83
79- Bulk d	ensity versus Neutron porosity (GS 160-3)	83
80- Bulk d	ensity versus Neutron porosity (Oct.D-1)	83
81- Bulk d	ensity versus Neutron porosity (Oct. D-3A)	83
82- Bulk d	ensity versus Neutron porosity (Oct. D-4)	83
83- Bulk d	ensity versus clay contents	83
84- Format	ion factor and porosity relationship.	88
85- Struct	ure cross section "strike line"	89
86- Struct	ure cross section "Dip line" to the north:	90
87- Struct	ure cross section "strike line" in the "D" platform.	90
88- Struct	ure cross section "Dip line" in the "D" platform.	91
89- Structi	ure cross section "Din line" to the court	01

90-	Top Nubia structure contour map.	92
91-	Top Lower Senonian structure contour map	92
		92
		92
		93
	Top Nukhul structure contour map	93
95-	Top Kareem structure contour map	93
96-	Nukhul Isopach contour map	93
97-	Sand Isolith map "Nukhul FM."	94
	Nukhul Formation Sand % Map	94
		95
,99-	Nukhul Formation Sand/Shale Ratio Map.	
100-	Geothermal gradient Map of the studied area.	95
	will a will an Michael discoveries	96

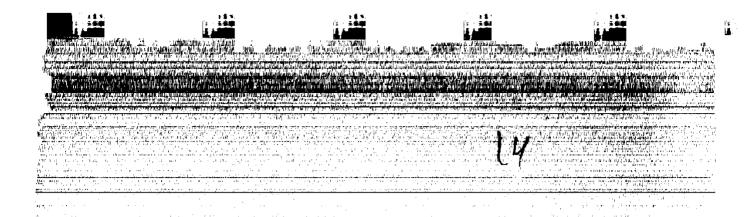
LIST OF TABLES

Table No.	Page
1 - Percentiles and grain size parameters of sandstone	
analysis samples	33
2 - Mineral composition of conglomerate	46
3 - Mineral composition of sandstone samples	48
4 - Percentiles of the single , wary and composite quartz	50
5 - Mineral composition of calcarenite sample	56
6 - Calculation of the standard deviation of the porosity data	67
7 - Porosity, Mean size diameter, and fine contents values	70
8 - The measured permeability values	73
9 - Statistical analysis of the obtained permeability data	75
10- Permeability, porosity, fine content, mean size, grain density	
and Bulk density values	79
11- Frequency distribution of the determined grain density values (Pg) 80
12- Frequency distribution of the Bulk density values	82
13- Porosity and formation resistivity data of the studied samples	88

ACKNOWLEDGEMENTS

The author wishes to express his grateful acknowledgements to Prof. Dr. Nasser M.Hassan, Department of Geology, Ain Shams University, and Prof. Dr.Samir A.Awad, Department of Geology, Ain Shams University, and Mr. Moustafa A. Hagras, Western Desert General Manager, Gupco, for their supervision of this work, true help and useful remarks.

The author thanks the staff of the Geology Department, Faculty of Science, Ain Shams University headed by Prof. Dr. Mohammed El Amin Bassiouny for their continuous help and useful discussions .


The author is deeply indebted to Mr Shawky Abdine, Head of Exploration Department, Gupco, Mr. M.Fryer, Deputy Exploration Manager, Mr. Gamal Hanter, E.G.P.C.Vice Chairman for Exploration, Mr. M.Rhodes. Amoco Egypt Exploration Manager for their approval for the initiation and presentation of this thesis.

Grateful thanks are due to my colleagues: Entesar Ahmed, Nora Amer, Maali Rizk, Mona Sayed and Hassan El Sayed for their sincere help in the finalization of this work.

ABSTRACT

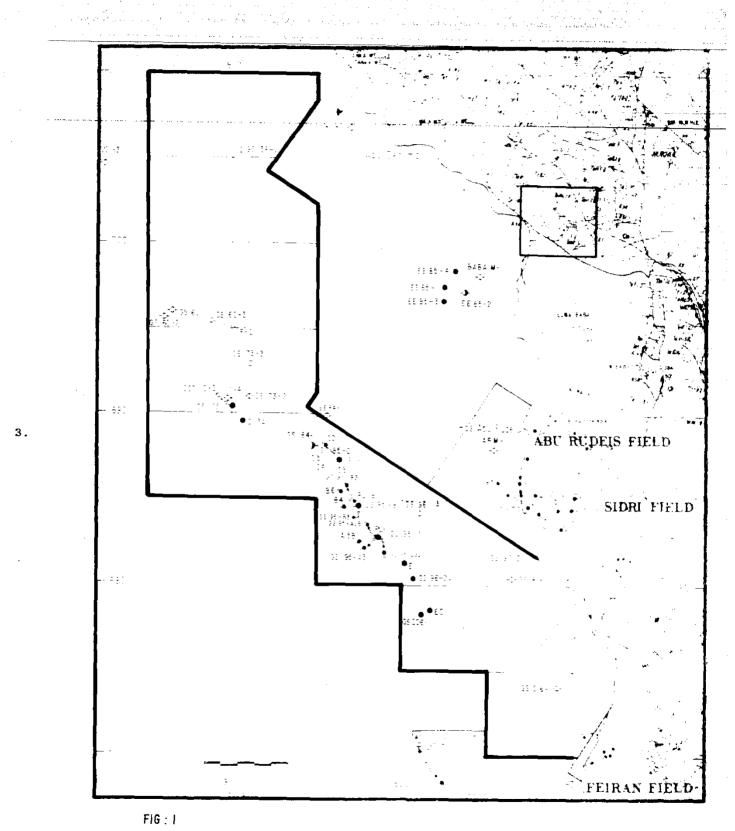
The present work deals with the study of the petrological and petrophysical properties of Oligo -Miocene sediments in the October-Agu Zenima area in the Gulf of Suez province; the most interesting and promising oil province in Egypt. This study is based on the data derived from various types of geological, paleontological, petrological, petrophysical and geophysical data in both surface and subsurface. The subsurface data include all the ditch samples, the side-wall cores and the conventional cores of two wells in the October field area. Surface data are represented by the Wadi Taybia surface samples. Moreover, the electric logs, (sonic, resistivity, density, gamma ray, spontaneous potential and dipmeter) were used to build the geological history of the study area.

A detailed sedimentologic and petrologic examination of thin sections representing the Oligo-Miocene sediments in the surface and subsurface are also considered. In addition, the residual and the mechanical analysis results were used to understand the environment of deposition. The petrophysical work includes the study of the porosity, permeability, grain density, bulk density and electric resistivity. Based on all these studies the geologic history and oil potentialities of the area were discussed.

NTRODUCTION

INTRODUCTION

1. Location


The studied area as shown in Fig-1 is located in the central part of the Gulf of Suez, 135 Km. south-southeast of the Suez city at the northern tip of the Gulf of Suez. The October field occupies the western part of the studied area and bounded by latitudes 28° 46' 40" and 28° 57' 10" North, longitudes 32° 57' 33" and 33° 10' East. Meanwhile, the Wadi Tayiba surface section is located at the mouth of the latitude 29° 04' 10" N and Longitude 33° 05' 46" E.

2. History

In April 1977 Amoco (Egypt) drilled the first discovery well in the October oil field which is GS 195-1 (Oct. - A1). The well tested oil of 28° API gravity at a rate of 4685 BOPD on a 34/64" choke from Nubia Sandstone. This was followed by the Nubia producers GS 195-2 (Oct-B1), GS 185-1 (Oct.-C1) and GS 196-2A wells. In June 1978, GS 173-1 (Oct - D1) was drilled to the north of the GS 185-1 well to define the northern limits of the proven reservoir on the GS 185-GS 195 blocks. This well encountered Nukhul oil bearing conglomerates and sands. On ½" choke size, the well produced 4760 BOPD of 31.6° API gravity.

In December 1979, the GS 173-2 well was drilled to the east of the GS 173-1 (Oct -D1) to test the Nubia, and Nukhul, drilling results proved to bedryhole. GS 160-3 recommended to test the upthrown side of the back block of the GS 160-1 and GS 160-2 wells. The well was spudded in August 1980 and was completed as Nukhul oil well. The southern extention of the field has been identified by GS 197-1, GS 197-2, GS 206-1 and E-2 wells.

The October D-2 development well was drilled in May 1981 to the N.W. of the Nukhul discovery, Oct.D 1, to establish production from the GS 172 block. The

LOCATION MAP