Ain Shams University Faculty of Medicine Department Of Obstetrics And Gynecology

Prolactin, Oestrogen, Cortisol and Thyroid Levels in Cord Blood of Infants with Respiratory Distress Syndrome

A Thesis
Submitted For Partial Fulfillment Of M.D. In
Obstetrics And Gynecology

By

arek Moustafa El Henady

[M.B.,B.Ch., M.Sc]

Supervised by

63988

Dr. Ibrahim El Mitwally Samaha

Professor of Obstetrics and Gynecology
Faculty of Medicine
Ain Shams University

Dr. Mounir Mohamed Fawzy El Hao

Assistant Professor of Obstetrics and Gynecology
Faculty of Medicine
Ain Shams University

Dr. Mona Mohamed Rafik

Assistant Professor of Clinical Pathology
Faculty of Medicine
Ain Shams University

1992

ACKNOWLEDGEMENT

I would like to express my sincere and deep appreciation and gratitude to my God Father Prof. Dr. Ibrahim El Metwally Samaha, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University for his unlimited generosity and his guidance and great support.

I would like to express my great thanks and gratitude to Assistant Prof. Dr. Mounir Mohamed Fawzy, Assistant Prof. of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University for his valuable cooperation and kind advice during the conduction of this work.

Also, I am very grateful to Assistant Prof. Dr. Mona Mohamed Rafik, Assistant Prof. of Clinical Pathology, Faculty of Medicine, Ain Shams University for her continuous support and help in conducting the laboratory work of this study.

CONTENTS

Title		Page
INTRODUCTI	ON	. 1
AIM OF THE	3 WORK	. 4
REVIEW OF	LITERATURE	
	LUNG DEVELOPMENT	5
	HISTORY	22
	INCIDENCE AND AETIOLOGY	23
	SURFACTANT	30
	PATHOGENESIS	48
	CLINICAL PRESENTATION	52
	DIFFERENTIAL DIAGNOSIS OF RDS	65
	COMPLICATIONS	' 76
	TREATMENT OF RDS IN NEWBORNS	80
PROCEDURE		96
RESULTS .	• • • • • • • • • • • • • • • • • • • •	120
DISCUSSION	·	154
SUMMARY .	• • • • • • • • • • • • • • • • • • • •	162
CONCLUSION	1	167
	•	4.50

Table Number	Title	Page
Table (1)	Respiratory distress and failure in newborn infants.	67
Table (2)	Causes of respiratory difficulty in newborn infants.	68
Table (3)	Causes of respiratory disorders in newborn infants.	69
Table (4)	Optimal incubator temperature for various birth weights and ages of babies.	83
Table (5)	Gestational age distribution of study and control groups.	120
Table (6)	Comparison between study and control groups with respect to the total level of serum prolactin.	123
Table (7)	Comparison between serum prolactin levels in cases of RDS with their control groups at different gestational ages.	125
Table (8)	Comparison between different age groups with respect to serum prolactin level.	127

Table	Number	Title	Page
Table	(9)	Comparison between study group and control group with respect to the total level of serum TSH.	128
Table	(10)	Comparison between mean values of TSH in cases of RDS with their control groups at different gestational ages.	130
Table	(11)	Comparison between different age groups with respect to serum TSH.	132
Table	(12)	Comparison between study group and control group with respect to the total level of serum FT4.	133
Table	(13)	Comparison between mean values of FT, in cases of RDS with their control groups at different gestational ages.	135
Table	(14)	Comparison between different age groups with respect to serum FT_4 .	137
Table	(15)	Comparison between study and control groups with respect to the total level of serum $\rm E_2$.	138

Table	Number	Title	Page
Table	(16)	Comparison between mean value of E_2 in cases of RDS with their control groups at different gestational ages.	140
Table	(17)	Comparison between different age groups with respect to serum E_2 level.	142
Table	(18)	Comparison between study group and control group with respect to the total level of cortisol.	143
Table	(19)	Comparison between mean values of cortisol in cases of RDS with their control groups at different gestational ages.	145
Table	(20)	Comparison between different age groups with respect to cortisol.	147
Table	(21)	Correlation between cord blood levels of prolactin, estrogen, cortisol and thyroid hormones in infants of group I.	148

Table Number	Title	Page
Table (22)	Correlation between cord blood levels of prolactin, estrogen, cortisol and thyroid hormones in infants of group II.	150
Table (23)	Correlation between cord blood levels of prolactin, estrogen, cortisol and thyroid hormones in infants of group III.	152
		1

LIST OF FIGURES

Figure	Number	Title	Page
Figure	(1)	Intrauterine development of bronchial tree.	7
Figure	(2)	Hypothesized sequence of events in RDS.	25
Figure	(3)	Glycerophospholipid composition of mature surfactant.	31
Figure	(4)	Biosynthetic pathway for (lecithin) synthesis, in type II pneumocytes.	35
Figure	(5)	Biosynthetic pathway for synthesis of phosphatidyl inositol and phosphatidylglycerol in type II pneumocytes.	36
Figure	(6)	CMP cycle for the regulation of the relative rates of synthesis of PC, PI and PG.	37
Figure	(7)	Relation between the level of lecithin, PI, PG, in amniotic fluid as a function of gestational age.	39
Figure	(8)	Pathogenesis of RDS.	50

LIST OF FIGURES

Figure	Number	Title	Page
Figure	(9)	Gestational age distribution in the study group.	121
Figure	(10)	Gestational age distribution in the control group.	122
Figure	(11)	Comparison of serum prolactin in the study and control groups.	124
Figure	(12)	Comparison of serum prolactin in the study and control in group I, II & III.	126
Figure	(13)	Comparison of serum TSH in the study and control groups.	129
Figure	(14)	Comparison of serum TSH in the study and control in group I, II & III.	131
Figure	(15)	Comparison of serum FT_4 in the study and control groups.	134
Figure	(16)	Comparison of serum FT_4 in the study and control in group I, II & III.	136
Figure	(17)	Comparison of serum E_2 in the study and control groups.	139

LIST OF FIGURES

Figure	Number	Title	Page
Figure	(18)	Comparison of serum $\rm E_2$ in the study and control in group I, II & III.	141
Figure	(19)	Comparison of cortisol in the study and control groups.	144
Figure	(20)	Comparison of cortisol in the study and control in group I, II & III.	146
Figure	(21)	The relation between $\rm E_2$ & FT, in infants of group I.	149
Figure	(22)	The relation between $\rm E_2$ & TSH in infants of group II.	151
Figure	(23)	The relation between S. prolactin & TSH in infants of group III.	153

LIST OF ABBREVIATIONS

}	
Respiratory distress syndrome	RDS
Hyaline membrane disease	HMD
Tetratiodo thyronine	\mathtt{FT}_4
Thyroid stimulating hormone	TSH
Continuous positive airway pressure	CPAP
Continuous negative airway pressure	CNP
Dipalmitoylphosphatidyl choline	DPPC
Phosphatidylglycerol	PG
Phosphatidyl choline (Lecithin)	PC
Phosphatidyl Inositol	PI
Choline phosphate cytidyltransferase	CPC
Phosphatidate phosphohydrolase	PAPas
Cytidine Monophosphate	CMP
Choline phosphotransferase	CPTas
Phosphatidic acid	PA
Cytidine triphosphate	CTP
Cytidine diphosphate	CDP
Adinosine Mono phosphate	AMP
Ventilation/Perfusion	V/P
Lecithin/Sphingomyelin	L/S
Foam Stability Test	F.S.
Fluorescence Polarization	F.P.
Rate Per Minute	r.P.M.
Cardiothymic/Thoracic Ratio	CT/T
Estradiol	E ₂
Serum	s

INTRODUCTION

Respiratory disorders are still a major cause of neonatal morbidity and mortality. Early diagnosis and treatment may significantly influence the outcome. Rapid assessment and diagnosis will allow early intervention and if necessary early transfer to tertiary center. The diagnosis of most respiratory disorders requires both clinical and radiological evaluation and often arterial blood gas sampling (Hanley. et al. 1963). Respiratory distress syndrome (RDS) is a condition characterized by failure of pulmonary gas exchange following birth with progressive atelectasis. Surfactant deficiency is the principle cause for

The term respiratory distress syndrome is usually used for non-fatal cases in which the symptoms can be attributed to surfactant deficiency; while the term "Hyaline membrane disease" is used to specify the disorder when associated with atelectasis and hyaline membrane formation beside surfactant deficiency (Strang, 1977).

atelectasis (Halman and Gluck 1982).

Crofton and Douglas (1981) reported that RDS accounts for 30% of all neonatal deaths and 50-70% of deaths in premature infants. Also Farrel and Avery (1975) had reported that RDS is the commonest cause of death among premature babies. So, the early diagnosis and proper management in a specially staffed and equipped hospital unit will help to decrease the neonatal mortality rate.

Valmen (1979) found that there is a substance normally present on the alveolar wall called pulmonary surfactant. Surfactant synthesis in the alveoli is dependent on normal PH, temperature and lung perfusion. Asphyxia, hypoxemia and pulmonary ischemia,