EFFECT OF TRANSVENOUS BALLOON MITRAL VALVULOPLASTY ON RIGHT VENTRICULAR FUNCTION ASSESSED BY EQUILIBRIUM RADIONUCLIDE ANGIOCARDIOGRAPHY

Thesis

Submitted in Partial Fulfillment for the

M.D. Degree in Cardiology

Ву

MOHSEN FAHMY METWALLY ALY

Master Degree in Cardiology Ain Shams University

59400

1/25 1 F

Supervisors

Prof. Mahmoud El Sherbiny Prof. of Cardiology - Ain Shams University

PROF. LAYIA FARES MATTA
Prof. and Chairman of Nuclear Medicine and
Radiotherapy Department - Ain Shams University

Prof. Mohammed Awad Taher Prof. of Cardiology - Ain Shams University Dr. Said Abdel Hafiez Khaled Ass. Prof. of Cardiology - Ain Shams University

Dr. Mohammed Gamal Abdel Bar

Lecturer of Cardiology - Ain Shams University

FACULTY OF MEDICINE
AIN SHAMS UNIVERSITY

1995

EFFECT OF TRANSVENOUS BALLOON MITRAL VALVULOPLASTY ON RIGHT VENTRICULAR FUNCTION ASSESSED BY EQUILIBRIUM RADIONUCLIDE ANGIOCARDIOGRAPHY

Thesis

Submitted in Partial Fulfillment for the

M.D. Degree in Cardiology

Ву

MOHSEN FAHMY METWALLY ALY

Master Degree in Cardiology Ain Shams University

Supervisors

Prof. Mahmoud El Sherbiny Prof. of Cardiology - Ain Shams University

PROF. LAYLA FARES MATTA
Prof. and Chairman of Nuclear Medicine and
Radiotherapy Department - Ain Shams University

Prof. Mohammed Awad Taher Prof. of Cardiology - Ain Shams University

Dr. Said Abdel Hafiez Khaled
Ass. Prof. of Cardiology - Ain Shams University

DR. Mohammed Gamal Abdel Bar Lecturer of Cardiology - Ain Shams University

> FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

> > 1995

To
My Parents
and
Brothers

Acknowledgement

It is a great thing to feel success and have the pride of achieving all what is always aspired. nevertheless, one must not forget all those usually help and push him onto the most righteous way that inevitably ends with fulfillment and perfection.

When the instant comes to appreciate all those kind-hearted people. I soon mention Prof. Dr. Mahmoud El-Sherbini, Professor of cardiology, Ain Shams University, the person who gave me the honor by reading every word written in this thesis. He really helped me by his precious opinions and contributive comments that served much in the construction of this work.

I'm really indebted to Prof. Dr. Leila Fares, Professor and Chairman of Nuclear Medicine and Radiotherapy Department, Ain Shams University, who always supports and gives the constructive pieces of advice.

Thanks are also due to Prof. Dr. Mohamed Awad Taher, Professor of Cardiology, Ain Shams University, as he paved me the way and participated in planning for this thesis by his fruitful ideas and suggestions.

I also wish to express my deep grattitude and cordial thanks to Dr. Said Khalid, Assistant Professor of Cardiology, Dr. Mohamed Gamal Abd El Bar, Lecturer of Cardiology, Dr. Assem Fathi, Lecturer of Cardiology and to Dr. Mohsen Mahdi, Lecturer of Cardiology for their invaluable support and kind help during the performance of this work.

Last but not least. I would like to extend my recognition to my parents who are behind each fruitful step in my life with their wisdom, encouragement and tender guidance.

CONTENTS	Page
	No.
- INTRODUCTION	1-2
- AIM OF THE STUDY	3
- REVIEW OF LITERATURES	
- Natural History of Mitral Stenosis	4-5
- Pathophysiologic Consequences of Mitral Stenosis	6-13
- Assessment of Right Ventricular Function	14-33
- Doppler Echocardiographic Assessment of Mitral Stenosis	34-41
- Mitral Balloon Valvuloplasty	42-64
- Short and Long Term Outcome of Balloon Mitral	65-75
Valvuloplasty	
- Complications of Balloon Mitral Valvuloplasty	76-83
- PATIENTS AND METHODS	84-96
- RESULTS	97-141
- DISCUSSION	142-152
- CONCLUSION	153
- SUMMARY	154-148
- REFERENCES	159-182
- ARABIC SUMMARY	

LIST OF ABBREVIATIONS

Ca = calcification = male F = femaleM = sinus rhythm AF = atrial fibrillation SR = first heart sound S1 = pulmonic component of second heart sound P2 \downarrow = weak $\uparrow = loud$ N = normal = short late diastolic rumble +1 = mid-to late diastolic rumble +2 = long diastolic rumble +3 = mitral valve area MVA MDPG = mean diastolic pressure gradient = mitral valve MV = thickness T = motion M = subvalvular affection S = left atrium TA MR = mitral regurgitation Ao. R. = aortic regurgitation = right ventricular systolic pressure RVSP = left ventricular ejection fraction LVEF TR = tricuspid regurgitation = pulmonary acceleration time **PAT** mPAP = mean pulmonary artery pressure = interatrial septum IAS = transesophageal echocardiography TEE = right ventricular ejection fraction RVEF = peak filling rate PFR = time to peak filling rate TPFR = end diastolic volume EDV = milli second msec = systolic pulmonary artery pressure SPAP

B = before

= after

Α

LIST OF FIGURES	Page No.
Figl. 1: Shows phase image, ventricular histogram and time activity curve of the RV studied by ERNA in a patient with significant mitral stenosis before BMV. Both RV-systolic (EF) and diastolic (PER and TPFR) indices were significantly imaired.	112
Figl. 2: Shows phase image, ventricular histogram and time activity curve of the RV studied by ERNA 24-48 hours after successful BMV. RV-EF, PFR and TPFR exhibited significant improvement after relief of mitral obstruction.	118
Figl. 3: Shows phase image, ventricular histogram and time activity curve six months after successful BMV. The RV-indices; EF, PFR and TPFR exhibited further significant improvement.	122

LIST OF TABLES	Page No.
Table (1) : Patient's characteristics.	97
Table (2) : Clinical Findings before and 24-48 nours and six	98
months after BMV.	99
Table (3) : Doppler echocardiographic findings before BMV.	
Table (4) : Continue Doppler chocardiographic findings before	100
BMV.	
Table (5) : Equilibrium radionuclide angio-graphic findings in	101
normal individuals.	
Table (6) : Equilibrium radionuclide angiographic findings before	102
and 24-48 hours and six months after BMV.	
Table (7) : Invasive hemodynamic data before and immediately	103
after BMV.	104
Table (8) : Data of BMV-Technique.	
Table (9) : Doppler echocardiographic findings one day after	105
BMV.	
Table (10): Doppler echocardiographic findings six months after	106
BMV.	123
Table (11): Success of BMV. Table (12): Comparison Between Invasive Hemodynamic Data	
Table (12): Comparison between invasive rates	124
before and Immediately after BMV. Table (13): Comparison Between Doppler Echocardiographic	
Table (13): Comparison between Bopped and data before and 24-48 hours after BMV.	125
Table (14): Tricuspid regurgitation before, 24-48 hours after and	
Table (14): Tricuspid regulgitudon belovo, sixmonths after BMV.	126
Table (15): The Doppler derived RVSP before and after BMV in	
Table (15) · The Boppier Table	

	Page No.
the suboptimal group.	127
Table (16): Comparison Between ERNA-Data before and 24-48	
hours after BMV.	128
Table (17): Comparison Between ERNA-Data before and 24-48	
hours after BMV.	129
Table (18): Comparison Between Doppler Echocardiographic	
data 24-48 hours and six months after BMV.	130
Table (19): Doppler derived PVSP in the optimal group at six	
months follow-up.	131
Table (20): The Doppler derived RVSP in the mitral restenosis	
group.	132
Table (21): Comparison Between ERNA-Data 24-48 hours and six	
months after BMV.	133
Table (22): Comparison of the RV-indices by ERNA between	
control subjects and the group of optimal BMV results.	134
Table (23): Comparison of the RV-indices by ERNA between	
control subjects and the group of mitral restenosis.	135

INTRODUCTION

INTRODUCTION

Rheumatic heart disease is the most common heart disease in much of the developing countries⁽¹⁾. Mitral stenosis is the most valvular lesion complicating rheumatic fever⁽²⁾. Mitral stenosis represents an important cause of pulmonary hypertension with subsequent right ventricular failure. After corrective surgery, both pulmonary hypertension and pulmonary vascular resistance decline; the major extent of which is noted within the first postoperative week⁽³⁾.

Mitral Stenosis is now commonly treated by balloon valvuloplasty. Balloon mitral valvuloplasty (BMV) was first described in 1984 by Inoue et al.⁽⁴⁾, and then by Lock et al., in 1985⁽¹⁾. In 1986, Al Zaibag et al., has introduced double balloon mitral valvuloplasty technique⁽⁵⁾.

Balloon mitral valvuloplasty has provided the opportunity to observe the effects of relieving the mitral valve obstruction free from the obscuring effects of general anaesthesia, intubation, and thoracotomy. Substantial reversibility of the pulmonary hypertension, reduction of the elevated pulmonary vascular resistance, and improvement of right ventricle had been observed following successful BMV, in patients with advanced mitral stenosis⁽⁶⁾. As might be expected, the extent of reversal of elevated pulmonary vascular resistance has varied depending on the adequacy of the valvuloplasty procedure in producing an increase

in the mitral orifice area and whether the patient develops mitral restenosis in the months following balloon dilatation⁽⁶⁾. Right ventricular failure is a common complication of tight mitral stenosis. This may be due to increased after load, chronic volume overload, myocardial failure or a combination of all^(3,7). The degree of pulmonary hypertension and right ventricular failure have been considered as determintal factors in the natural history of mitral stenosis⁽⁸⁾.

Initial studies of right ventricular function depended on invasive cardiac catheterization and contrast angiography and was based on radiographic validation of right ventricular volumes from postmortum casts of right ventricle⁽⁹⁾, and on stroke volume determination by thermodilution technique⁽¹⁰⁾. However, assessment of right ventricular ejection fraction (RVEF) poses problems that are not encountered when measuring left ventricular ejection fraction. Since the right ventricular cavity is irregular and crescent in shape and has numerous trabeculations, it does not conform to any regular geometric model. Right ventricular ejection fraction calculation from contrast ventriculography and echocardiography is therefore, unreliable^(3,11).

Radionuclide cineangiographic techniques, being counts based, overcome the constraints of complex geometry and are therefore, more suited for studies of right ventricular function⁽¹²⁾.