AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL DEPARTMENT

GRILLAGE ANALOGY FOR CRACKED R.C. SLABS

BY USAMA MOHAMMED NABIL NAGY

B.Sc. Civil Engineering 1988 - Ain Shams University

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT FOR THE REQUIREMENTS OF THE DEGREE OF MASTER OF SCIENCE

IN CIVIL ENGINEERING (STRUCTURAL)

SUPERVISED BY

Prof. Dr. Ahmed A. Qurashy

Prof. of Theory of Structures Structural Engg. Department Ain Shams University Prof. Dr. Abd EL-Wahab Abu El-Aynain

Prof. of Reinforced Concrete Structural Engg. Department Ain Shams University

Dr. Abd El-Salam A. Mokhtar

Assoc. Prof. Structural Engg. Department Ain Shams University

CAIRO, EGYPT 1997

بسم الله الرحمن الرحيم

EXAMINERS COMMITTEE

Name, Title and Affiliation

Signature

I-Prof. Dr. Abd El-Rahman S. Ba-Zaraah

A. Bazaraa

Professor of Structural Engineering Head of Structural Engineering Department Cairo University

2-Prof. Dr. Omar Ali El-Nawawi

Prof. of Reinforced Concrete Structures Structural Engineering Department Ain Shams University

On the Behalf of Supervisors Committee

3-Prof. Dr. Ahmed A. Qurashy

Ain Shams University

Professor of Theory of structures

Structural Engineering Department

Date: / /1997

VITA

Name : Usama Mohammed Nabil El-said Nagy

Date of Birth : May 8th, 1966

Place of Birth : Tanta - El Gharbiah

: B. Sc. in Civil Engineering (Structural Eng.

Department) with general grade "Very good"

Honors.

Graduated from : Ain Shams University

Faculty of Engineering

Date of Graduation : June 1988

Date: 12/2/51

Name: Usama M. Nabil Nagy

Signature: المناب

21/2/10

STATEMENT

This dissertation is submitted to Ain Shams University for the

degree of Master of Science in Civil Engineering (structural).

The work included in this thesis was carried out by the author in

the department of Civil Engineering (Structural Division), Ain Shams

University, from Nov.1989 to Feb. 1997.

No part of this thesis has been submitted for a degree or a

qualification at any other University or Institution.

Date: 12/2/97

Signature: نین در

Name: Usama M. Nabil Nagy

DEDICATION

To my sweet wife and my sons Islam & Tarek

To my family: my beloved mother and father without whose love I could not have continued with this study.

To my friends, without their help, advice, and encouragement, this work would not have been possible.

ACKNOWLEDGMENT

I wish to express my deep gratitude to **Prof. Ahmed A. Qurashy**, Professor of Theory of Structures for his kind supervision and useful suggestions since the start of the work.

I wish to express also my deep gratitude to **Prof. Abd El-Wahhab Abu El-Aynain**, Professor of Reinforced

Concrete Structures for his kind supervision and useful suggestions since the start of the work.

I am deeply thankful and grateful to **Dr. Abd El-Salam**Ahmed Mokhtar, Assoc. Prof., Structural Engineering
Department for his constant supervision, planning, generous
support and constructive criticism throughout this work.

I am also deeply grateful to my family, for their help and encouragement since the start of the work.

ABSTRACT

Name Usama Mohammed Nabil Nagy.

Title "Grillage Analogy for Cracked Reinforced Concrete Slabs".

Master of Science Dissertation , Faculty of Engineering , Ain Shams University .

The thesis presents the response of Reinforced Concrete slabs after cracking and prior to failure using the grillage analogy. A simplified numerical method is developed to study their behavior up to failure using the stiffness method. The effect of the material non linearity due to change in the structural rigidity (flexural & torsioral rigidities) is incorporated.

The flexural rigidity is represented by a trilinear moment-curvature relationship. The torsional rigidity is represented by a trilinear relationship taking into account the shear-torsion-flexure interaction. A computer program is prepared and various shapes of beams and slab are studied using the applied computer algorithm. The results have been compared with the published experimental data; and, the load-displacement curves are plotted. The comparison has shown a good agreement. Thus, a simple approach has been presented to determine the ultimate load of slabs, this load is close to that obtained by the yield line theory.

Key Words: reinforced concrete, beams, slabs, grillage analogy, grids, ultimate, analysis, stiffness method, torsion.

TABLE OF CONTENTS

	Title	Page
Ackn	owledgment	i
Abst	act	ii
Table	Of Contents	iii
List o	f Figures	vii
List of Tables		
СНА	PTER 1 (INTRODUCTION)	
1.1	General.	2
1.2	Review of Previous Work	2
1.2.1	Significance of Nonlinear Analysis.	2
1.2.2	Grillage Analogy.	5
1.3	Objectives.	11
1.4	Scope	11
CHAPTER 2 (METHOD OF ANALYSIS)		
2-1	Introduction	14
2.2	Stiffness Analysis of Grids.	14
2.2.1	Degree of Freedom	15
2.2.2		15
2.2.3 2.3	Global Stiffness Coefficient For a Grid Member Stress-Strain Relationships	20 21
2.3.1	Steel Reinforcement.	21

2.3.2	Concrete in Compression	23
2.3.3	Concrete in Tension.	25
2.4	Flexural Rigidity of R.C. Section.	26
2.4.1	Introduction.	26
2.4.2	Development of Moment-Curvature Relationship	28
2.4.2.1	Used Method to Calculate Moment - Curvature	
2.4.3	Relationship Determination of Simplified Moment - Curvature	29
	Relationships.	34
2.5	Torsion of Structural Concrete.	36
2.5.1	General.	36
2.5.2	Torsional Stiffness in Homogeneous Sections	37
2.5.3	Strength of R.C. Sections in Torsion.	38
2.5.3.1	Used Formulas To Obtain Properties of R.C. Sections	
	Under Torsion	40
2.5.4	Torque-Twist Relationship	43
2.5.5	Interaction Surface.	46
2.5.5.1	General About Interaction Surface	48
2.5.5.2	Flexure - Torsion Interaction	49
2.5.5.3	Shear - Torsion Interaction	55
СНА	PTER 3 (CPOMPUTER PROGRAM)	
3.1	Introduction	60
3.2	Sequence of Analysis.	60
3.2.1	Linear Analysis Stage.	61
322	Calculation of Correction Factors Stage	63

3.2.2.1 I	Elexural Rigidity Correction Factors	63
3.2.2.2	Torsional Rigidity Correction Factors	66
3.2.3	Nonlinear Analysis Stage.	68
	Nonlinear Technique.	68
3.2.3.2	Iterative Procedure.	69
3.2.4	Final Results Stage.	70
3.3	Computer Program	72
3.3.1	Summary of Sub. Programs	72
3.3.2	Limitations of The Program	74
3.3.3	Flow-Chart of Main Program	75
CHA	PTER 4 (APPLICATIONS)	
4.1	Introduction	
4.2	Test of Computer Program	
4.2.1	Check of Linear (First) Stage	85
4.2.2	Nonlinear Stage Results	85
4.2.2.2	Check of Concrete Sections Properties	85
4.2.2.1	Check of Final Stage Results	87
4.3	Applications.	
4.3.1	R.C. Beams Under Pure Torsion	
4.3.2	R.C. Beams Under Bending Moment only	
4.3.2.		
4.3.2.	~	
4.3.3	Reinforced Concrete beams in Torsion and Bending.	
4.3.4	Ultimate Load of R.C. Slabs.	
4.3.4.	1 Case of One way Slab	103

4.3.4.2 Case of Flat Slab with Various Supporting Conditions	101
4.3.4.2.1 Application (1)	• 107
4.3.4.2.1 Application (1)	107
4.3.4.2.2 Application (2)	114
4.3.4.2.3 Application (3)	417
CITA DOWN	120
CHAPTER 5 (CONCLUSIONS & RECOMMENDATIONS	5)
5.1 Conclusions.	,
***************************************	127
5.2 Recommendations for future researches	128
APPENDIX REFERENCES	
	129
APPENDIX (A): Input Data For Program Grid	134
APPENDIX (B): Input Data For Program CV123T	
(-) Imput Data For Frogram CVI23T	144
APPENDIX (A): List of Program Grid	145
APPENDIX (B): List of Program CV123T	- 10
(-) - Last of Flugram CV1231	165

LIST OF FIGURES

Figure	Title	Page
Fig. 1.1	Concrete Compressive Stress Block Parameters	4
Fig. 1.2	Proposed Stress-Strain Relationship for confined	
	or Unconfined Concrete	4
Fig. 1.3	Stress-Strain Curves for Steel Reinforcement	4
Fig. 1.4	Grid Model .	6
Fig. 1.5	Description of the Slab as a Grid System	6
Fig. 1.6	Idealized Elastic - perfectly Plastic Moment	
	Curvature Relationship.	8
Fig. 1.7	Piecewise Linear Load - Deflection Curve	8
Fig. 1.8(a)	Simplified Moment - Curvature Relationship	10
Fig. 1.8(b)	Simplified Torque - Twist Relationship	10
Fig. 2.1	Degrees Of Freedom At Joints of Grid Element	16
Fig. 2.2(A)	Member Stiffness : Unit Translation and Rotation At J .	17
Fig. 2.2(B)	Member Stiffness :Unit Translation and Rotation At K	18
Fig. 2.3	Stress-Strain Curves For Steel Reinforcement	22
Fig. 2.4	Proposed Stress-Strain Relationship For Confined or	
	Unconfined Concrete .	22
Fig. 2.5	Idealized Stress-Strain Relationship For Concrete In	
	Tension.	22
Fig. 2.6	Flexural Deformation of Conc. Element	27
Fig. 2.7	Proposed Stress-Strain Relationship For R.C. Sections .	31
Fig. 2.8	Simplified Moment - Curvature Relationship	35
Fig. 2.9	Torsional Stress In Homogeneous Sections	39
Fig. 2.10	Torsional Rigidity For T-Sections	39
Fig. 2.11	Torque - Twist Curves	44
Fig. 2.11(D)	Torque - Twist Curves Of Beams With Various % Of Ri	ft. 45

Fig.	2.12	Interaction surfaces for combined bending-shear-torsion	47
Fig.	2.13	Mode Failure for a concrete section with stirrups	50
Fig.	2.14	Mode Failure of T-beams	51
Fig.	2.15	Interaction curves for combined bending-torsion	56
Fig.	2.16	Shear- torsion interaction curve	58
Fig.	3.1	Local System of Loads at Ends of Grid element	62
Fig.	3.2	Iterative or / Newton Procedures	71
Fig.	3.3	Flow chart of the main program.	76
Fig.	4.1	Schematic Plan of Six - Panel Waffle Slab	81
Fig.	4.2	Schematic Cross Sections of The Model and Details of	
		Reinforcement .	82
Fig.	4.3.a	Cases of Loading.	83
Fig.	4.3.b	Scheme of Loading to Failure (Load Patterns I & III)	84
Fig.	4.4	Comparison Load - Deflection Curves Between the Exp.	
		Data and Developed Method Results (case 1 of Loading).	89
Fig.	4.5	Comparison Load - Deflection Curves Between the Exp.	
		Data and Developed Method Results (case 1 of Loading).	90
Fig.	4.6	Comparison Load - Deflection Curves Between the Exp.	
		Data and Developed Method Results(case 1 of Loading).	91
Fig.	4.7	Details of Tested R.C. Beam Under Pure Torsion	94
Fig.	4.8	Comparison Between the Experimental Data Tested	
		by [17] and Developed Method Results	96
Fig.	4.9.a	Rect. R. C. Beam Tested By Mcneice [14].	100
Fig.	4.9.b	The Actual Rectangular Section of The Beam And	
		Suggested T-Section	100
Fig.	4.10	Comparison Load - Deflection Curves Between the Exp.	
		Data by Tested [14] and Developed Method Results	101
Fig.	4.11	Comparison Load - Deflection Curves Between Actual	
		Pact Section And Suggested T-Section	102