Microbiological and Biochemical Studies on the Production of Rifamycin

Thesis
Submitted for Partial Fulfilment
of Master Degree in Microbiology

By

Hesham Ali Metwally El-Enshasy

B. Sc. Microbiology - Chemistry. Faculty of Science, Ain Shams University, 1989

Supervised by

55373

576.14 H. A

Professor

MOHAMED R. ABU-SHADY

Prof. of Microbiolog
Vice Dean
Faculty of Science
Ain Shams University

Professor

AHMED I. EL-DIWANY

Nat.&Microb. Products Dept. National Research Centre. Dokki, Cairo Ass. Professor

MOHAMED A. FARID

Nat. & Microb. Products Dept. National Research Centre. Dokki, Cairo

Ain Shams University Faculty of Science Dept. of Microbiology 1994

Microbiological and Biochemical Studies on the Production of Rifamycin

BOARD OF SCIENTIFIC SUPERVISION

Professor Dr. MOHAMED R. ABU-SHADY

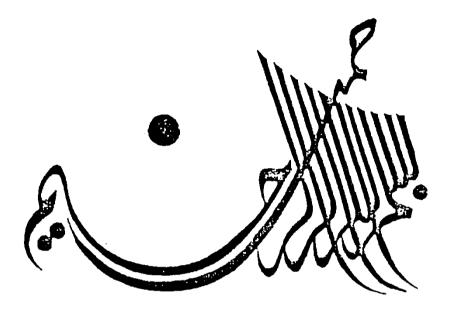
Professor of Microbiology

Vice Dean

Faculty of Science

Ain Shams University

Cairo - Egypt.


Professor Dr. AHMED I. El-DIWANY Natural & Microbial Products Dept. National Research Centre. Dokki, Cairo, Egypt.

Ass. Professor Dr. MOHAMED A. FARID Natural & Microbial Products Dept. National Research Centre. Dokki, Cairo, Egypt.

M.A-Farid

M. Dhushan

آنَ لَهُ الْمِيْلُ الْمُنْ الْمُلْكُمُ الْمُنْ الْمُلْكُمُ الْمُنْ الْمُنْ الْمُنْ الْمُنْ الْمُنْ الْمُنْ الْ مُنْ اللَّهُ الْمُنْ اللَّهُ ا مَنْ اللَّهُ اللّ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّاللَّهُ اللَّهُ اللّ اللَّهُ اللَّ

Thi this or any oth		usly submitted for any degree at	
		Signed	
	I	lesham Ali Metwally El-Enshas	у

Acknowledgement

I would like to express my sincere gratitude and heartfelt thanks to Prof. Dr. Mohamed R. Abu-Shady, Microbiology Dept., Faculty of Science, Ain-Shams University, for his supervising the work and providing scientific assistance for presenting the thesis.

Also, it gives me great pleasure to extend my thanks to Prof. Dr. Ahmed I. El-Diwany and Dr. Mohamed A. Farid, Chemistry of Natural and Microbial products Dept., National Research Centre (NRC), Cairo, who suggested the topic of this thesis and who meticulously supervised the execution of the experimental work and were always there with their guidance and constructive criticism. My heartful gratitude is expressed to them.

Sincere thanks are also due to Prof. Dr. Forsche, Secondary metabolite Dept, Gesellschaft fur Biotechnologische Forschung, Braunschweig, Germany. for his kind help in the section dealing with the selection and photographing of different colonies

I am indeed indebted to all members of Natural and Microbial Products Dept, National Research Centre, the auther feel much thanks and grateful for their help.

CONTENTS

Acknowledgment	I
List of tables	VII
List of figures	XI
Preface	1
Review of Literature	3
Classification of antibiotics	_
The discovery of rifamycins	4
The producer microorganism	6
The chemical composition of rifamycins	7
The different types of rifamycins	8
The biological activity of rifamycins	8
Mode of action	9
Clinical uses of rifampin	12
Production of rifamycins	13
Immobilized cell technology	15
Immobilized cell technology	18
Classification of immobilized cells	18
Techniques of whole cell immobilization	20
Cross-Linking method of immobilization	20
Carrier binding method	22
Adsorption method	22
Chelation of metal-binding of immobilization	23
Covalent-binding method of immobilization	23
Entrapment method of immobilization	25
Fiber entrapment method of immobilization	26

Gel entrapment	
Entrapment by polymerization	26
Entrapment of:	27
Entrapment of ionic network formation	28
Entrapment by precipitation	30
Microencapsulation method of immobilization	31
Immobilized free cell methods	32
Pelletization and flocculation	32
Antibiotic production by immobilized cell	33
Materials and Methods	37
Chemical used	
Strain used	37
Media for cultivation and characterization of selected colony	38
Gelatin liquefaction test	39
Media for vegetative cell growth and form	41
Media for vegetative cell growth and fermentation	42
Shake flask cultivation	43
Determination of pII	43
Measurement of biomass	43
Determination of rifamycins	44
Methods for immobilization	47
Immobilization of cells by agar gel method	47
Immobilization of cells by polyacrylamide gel method	47
Immobilization of cells by alginate method	48
Determination of alginate bead diameter	49
Determination of bead dry weight	49

117	nmodilization of cells by adsorption onto glass wool surface	50
E	Determination of escaped cells	50
D	Determination of entrapped cells on glass wool surface	50
L	ipid supplimentation	50
Resul	ts:	52
1-	Survey of Amycolatopsis mediterranei CBS 42575 colonies	
	for the production of rifamycins B and SV	52
2-	Immobilization by alginate method	
2.1	Effect of different parameters on rifamycins production and	
	capsule stability	65
2.1.1	Effect of different concentrations of sodium alginate on rifamycins	
	production and capsule stability	65
2.1.2	Effect of different grades of sodium alginate on rifamycins	
	production and capsule stability	69
2.1.3	Effect of different diameter of capsules on ritamycins	
	production and capsule stability	72
2.1.4	Effect of different cell loading of A. mediterranei inside the	
	capsule on rifamycins production and capsule stability	75
2.1.5	Effect of different gelling agents on the rifamyoins production	
	and escanment of 4 mediterranei	78

2.2	Comparative study between growth and rifamycins production	
	in case of free and immobilized cells in calcium alginate gel	81
2.2.1	Effect of different incubation time	81
2.2.2	Effect of different inoculum size	87
2.2.3	Effect of different initial pH values	93
2.2.4	Effect of different concentrations of yeast extract	98
2.2.5	Effect of different concentrations of Magnesium sulfate	104
2.2.6	Effect of different concentrations of glucose	110
2.2.7	Effect of different concentrations of calcium chloride	115
3	Immobilization of Amycolatopsis mediterranei CBS 42575	
	using polyacrylamide gel	120
3.1	Effect of gel forming reagents on rifamycins production and	
	cell growth	120
3.2	Rifamycins production by immobilized cells	124
4	Immobilization by agar method	1 25
5	Immobilization of cells by adhesion using glass wool	126
5.1	Effect of different types of glass wool on rifamycins production	
	and cell growth	126
5.2	Effect of different weight of glass wool (Corning grade) on	
	rifamycins production and cell escapement	131
5.3	Effect of different inoculum size on rifamycins production by	
	immobilize cells on glass wool	135

5.4	Effect of different concentrations of glucose of rifamycms	
	production by immobilized cells on glass wool	13 B
6	Repeated batch fermentation for rifamycins production	141
6.1	Continuous production of rifamycins by immobilized	
	cells in calcium alginate beads for 6 repeated batches	141
6.2	Continuous production of rifamycins by immobilized	
	cells on glass wool for 6 repeated batches	145
7	Effect of pure lipids and natural oils on the production of	
	rifamycins by Amycolatopsis mediterranei	155
Disc	ussion	160
Sum	mary	170
Refe	rences	174
Aral	oic summary	

VII

List of Figures

	Page
Fig. (1): The chemical structure of the most important types of Rifamycins	10
Fig. (2): Rifamycins from Amycolatopsis mediterranei with rifamycin S as a key intermediate	11
Fig. (3): Classification of Immobilization methods for whole cells	21
Fig. (4a): Standard curve for Rifamycin B	45
Fig. (4b): Standard curve for Rifamycin SV	46
Fig. (5a-f): Different morphological structure of Amycolatopsis mediterranei colonies on Bennet's agar medium	54
Fig. (6): Effect of different concentrations of sod. alginate on rifamycin production by immobilized cells	68
Fig. (7): Effect of different grades of sod. alginate on rifamycins production by immobilized cells	71

VIII

	Page
Fig. (8): Effect of different capsule diameter on rifamycins production by immobilized cells.	74
Fig. (9): Effect of different cell loading inside the capsule on rifamycins production by immobilized cells	77
Fig. (10): Effect of different gelling agents on ritamycins production by immobilized cells.	80
Fig. (11a): Effect of different incubation period on rifamycins production by free cells.	85
Fig. (11b): Effect of different incubation period on rifamycins production by immobilized cells	86
Fig. (12a): Effect of different inoculum size on rifamycins production by free cells	9 1
Fig. (12b): Effect of different inoculum size on rifamycins production by immobilized cells.	92
Fig. (13a): Effect of different pH values on rifamycins production by free cells.	96
Fig. (13b): Effect of different pH values on ritamycins production by immobilized cells.	97
Fig. (14a): Effect of different concentrations of yeast extract on rifamycins production by free cells	102
Fig. (14b): Effect of different concentrations of yeast extract on rifamycins production by immobilized cells	103

	Pag
Fig. (15a): Effect of different concentrations of magnesium sultate on rifamycins production by free cells	108
Fig. (15b): Effect of different concentrations of magnesium sulfate on rifamycins production by immobilized cells	109
Fig. (16a): Effect of different concentrations of glucose on rifamycins production by free cells	113
Fig. (16b): Effect of different concentrations of glucose on rifamycins production by immobilized cells	114
Fig. (17a): Effect of different concentrations of calcium chloride on rifamycins production by free cells	118
Fig. (17b): Effect of different concentrations of calcium chloride on rifamycins production by immobilized cells	119
Fig. (18): Effect of different grades of Glass wool as immobilizing matrix on rifamycins production by immobilized cells	130
Fig. (19): Effect of different weights of Glass wool as immobilizing matrix on rifamycins production	134

·	Page
Fig. (20): Effect of different Inoculum size on rifamycins production by cells immobilized on glass wool	137
Fig. (21): Effect of different glucose concentrations on rifamycins production by cells immobilized on glass wool	140
Fig. (22): Continuous production of rifamycins by cells immobilized in calcium alginate beads for 6 repeated batches	144
Fig. (23): Continuous production of rifamyeins by immobilized cells on glass wool surface for 6 repeated batches using glucose as C-source, and 96 h. batch time	151
Fig. (24): Continuous production of rifamycins by immobilized cells on glass wool surface for 6 repeated batches using sucrose as C-source, and 96 h. batch time.	1 52
Fig. (25): Continuous production of rifamycins by immobilized cells on glass wool surface for 6 repeated batches using glucose as C-source, and 48 h. batch time	153
Fig. (26): Continuous production of rifamycins by immobilized cells on glass wool surface for 6 repeated batches using sucrose as C-source, and 48 h. batch time	154