GRAVITY STUDY AND STRUCTURAL ANALYSIS OF SELECTED AREAS OF THE MORTHERN PART OF THE WESTERN BANK OF THE HIGH DAM LAKE

THESIS

SUBMITTED FOR PARTIAL PULFILLMENT OF THE REQUIREMENTS.

FOR THE DECREE OF MASTER OF SCIENCE

In APPLIED GEOPHYSICS

EL-SAYED ABD EL-AZIM MOHAMED ISSAWY B.Sc. 1988

551. 19 A. A

TO

50590

THE GEOLOGY DEPARTMENT, FACULTY OF SCIENCE
AIN SHAMS UNIVERSITY

Supervised By

Prof. Dr. : HASSAN A. EL-ETR.

Prof. Dr.: ALI A. TRALER

Dr. : HAMED M. DOWIDAR

CAIRO 1993

بسد الله الرحن الرحدير " وركا لي وي من العظام العظام العظام العظيم مدود الله العظيم سورة الإسراء - جزد من الآية ٨٥

Supervisors

Prof. Dr. HASSAN A. EL-ETR 4. S. Stence, Ain Shams University.

Prof. Dr. ALI A. TEALEB

Professor of Geophysics and Head of the Department of Geomagnetism, Gravimetry and Geoelectricity at National Research Institute of Astronomy and Geophysics, Helwan.

Dr. HAMED M. DOWIDAR

Lecturer of Geology, Faculty of Science, Ain Shar
University.

NOTE

The present thesis is submitted to the Faculty of Science, Ain Shams University in partial fulfillment for the requirements of Master of Science in Geophysics.

Besides the research work materialized in this thesis, the candidate has attended ten post graduate courses for one year in the following topics:

- 1- Field Geology and Geologic maps.
- 2- Statistical Geology and Computer Sciences.
- 3- Potential Theory.
- 4- Gravimetric Methods.
- 5- Magnetic Methods.
- 6- Electric Methods.
- 7- The Basement Complex.
- 8- Basins of Deposition.
- 9- Structural Geology.
- 10- Geotectonics.

He has successfully passed the final examination of these courses, besides an English Language Course.

Prof. Dr. W. M. Abd El-Malik

Head of Geology Department

Faculty of Science

Ain Shams University

ACKNOWLEDGEMENTS

In the first place, praise be to GOD and gratitude is due to almighty GOD who ided and guided me to bring forth this thesis to light. Thanks GOD.

My heartful gratitude to Prof. Dr. W. M. Abd-Elmalik, professor of Geology and Head of the geology department, Faculty of Science, Ain Shams University, for his offering the facilities for this work.

I would like to express my great indebtedness and deep gratefulness my supervisor, **Prof. Dr. Hassan. A. El-Etr**, professor of Geology, Geology Dep., Faculty of Science, Ain Shams University, for Kind supervision, for helping, and for doing his best in solving all the problems I'd faced during the long run of the research work.

The gratitude also extended to Prof. Dr. N. M. Abu-Ashor, professor of Geophysics and Vice-Dean of the faculty of Science, Ain Shams Univ., for his kindly offered facilities to finishing this work.

I cannot sufficiently expressed my deepest thanks and gratitude to my supervisor, **Prof. Dr. Ali A. Tealeb**, professor of Geophysics, and Head of the Gravimetry, Geomagnetism, and Geoelectricity Dep., National Research Institute of Astronomy and Geophysics Helwan, for his continuous assistance, encouragement and invaluable guidance.

My Sincere gratitude to Dr. H. M. Dowidar, lecturer of Geology, Geology Dep. Faculty of Science, Ain Shams Univ., for kind supervision.

Moreover, I would like to thanks the Chairman and Vice Chairman of the High and Aswan Dams Authority, Whose sponsorship made all of this work possible.

The author express his thanks to the staff members of the Geology and Geophy. Dep., Faculty of Science, Ain Shams Univ., as well as Mr. A. S. Helaly and Mr. A. M. Abd El Gwad, for their assistance in this work.

Special thanks are also due to my colleagues of the laboratory of Gravimetry and Geodesy and the Aswan Regional Seismological Center, for their help, as well as Mr. A. Radwan, for great helping during this work, and Mr. A. Ragab, for helping in preparing the figures.

Last but not least, from all my heart, I feels indebted to my family for their great help and permanent care.

LIST OF CONTENTS

	Page
LIST OF FIGURES	I
LIST OF TABLES	VIII
CHAPTER 1	
1. PREVIOUS GEOPHYSICAL LITERATURE	1
1.1. INTRODUCTION	1
1.2. SEISMICITY	2
1.2.1. SPATIAL DISTRIBUTION OF EPICENTERS	
IN EGYPT	3
1.2.2. 1981 NOVEMBER 14, KALABSHA EARTHQUAKE	6
1.2.3. FREQUECY OF EARTHQUAKE OCCURRENCES	
IN ASWAN REGION	10
1.2.4. MICROEARTHQUAKE STUDIES	1.3
1.3. GRAVITATIONAL FIELD STUDIES	14
1.3.1. GRAVITY MAP OF EGYPT	14
1.3.2. GRAVITY STUDIES IN THE NORTHERN	
PART OF THE WESTERN BANK OF THE	
HIGH DAM LAKE	16
1.4. HEAT FLOW STUDIES	18
*1.5. RECENT CRUSTAL MOVEMENT STUDIES	20
CHAPTER 2	
2. QUALITATIVE INTERPRETATION OF GRAVITY DATA	28
2.1. INTRODUCTION	28
2.2. DEFINITION OF GRAVITY INTERPRETATION	
OF GRAVITY DATA	31

2.3. THE BOUGUER ANOMALY MAP OF KALABSHA AND	
SEIYAL AREAS AT THE NORTHERN PART OF THE	
WESTERN BANK OF THE HIGH DAM LAKE	35
2.3.1. SEIYAL HIGH ANOMALY BELT	37
2.3.2. THE INCOMPLETE NORTHERN SEIYAL	
LOW ANOMALY BELT	39
2.3.3. KALABSHA LOW ANOMALY BELT	40
2.3.4. THE INCOMPLETE SOUTHERN HIGH	
ANOMALY BELT	41
2.3.5. THE CONTACTS BETWEEN THE BELTS AND	
THEIR GEOLOGICAL INTERPRETATION	42
2.3.5.1. THE CONTACT BETWEEN THE SEIYAL	
HIGH ANOMALY BELT AND THE	
INCOMPLETE NORTHERN SEIYAL	
LOW ANOMALY BELT	42
2.3.5.2. THE CONTACT BETWEEN THE SEIYAL	
HIGH ANOMALY BELT AND THE	
KALABSHA ANOMALY BELT	43
2.3.5.3. THE CONTACT BETWEEN THE KALABSHA	
LOW ANOMALY BELT AND THE	
INCOMPLETE SOUTHERN BELT	43
2.4. REGIONAL-RESIDUAL SEPARATION OF	
GRAVITY ANOMALIES	44
2.4.1. REGIONAL RESIDUAL SEPARATION	
USING GRIFFIN METHOD	45
2.4.2. RESIDUAL ANOMALY MAP OF THE	
STUDY AREA	47

4.3.1. FAULTING PATTERN OF THE SEDIMENTARY	
SECTION AND BASEMENT COMPLEX	97
4.3.2. FAULTING PATTERN AT THE SHALLOWER ZONE	
LESS THAN 2.0 Km IN DEPTH	100
4.3.3. FAULTING PATTERN AT 2.0 Km DEPTH	198
4.3.4. FAULTING PATTERN AT THE DEEPER ZONE	
MORE THAN 2.0 Km IN DEPTH	105
4.4. THE BASEMENT CONFIGURATION OF THE	
STUDY AREA	108
4.4.1. METHODS OF DEPTH COMPUTATIONS	108
4.4.1.1. THE SPECTRAL ANALYSIS	
TECHNIQUE	110
CHAPTER 5	
5. GEOLOGICAL SETTING OF THE STUDY AREA	122
5.1. GENERAL TOPOGRAPHY AND GEOMORPHOLOGY OF	
THE WESTERN DESERT	122
5.2. GEOLOGY AND STRUCTURE OF THE AREA NORTHWES	T
OF THE HIGH DAM LAKE	125
5.2.1 GEOMORPHOLOGY	125
5.2.1.1. ASWAN HILLS	125
5.2.1.2. NILE VALLEY AND THE HIGH	
DAM RESERVOIR	128
5.2.1.3. NUBIA PLAIN	128
5.2.1.4. SINN EL-KADDAB ESCARPMENT	129
5.2.2. STRATIGRAPHY	129
5.2.3. MAIN STRUCTURE FEATURES	138
FAA TILET M. TILETON	

5.2.3.2. CLOSURE STRUCTURES (FOLDS)	149
5.2.3.3. UPLIFTING OF THE BASEMENT	
ROCKS	151
5.3. RELATION BETWEEN THE SURFACE FEATURES	
AND THE SUBSURFACE GEOLOGICAL STRUCTURES	152
CHAPTER 6	
6. SUMMARY AND CONCLUSION	153
REFERENCES	160
APPENDIX	172
ARABIC SUMMARY	

LIST OF FIGURES

			Page
Fig.	(1-1)	A. Location of permanent seismic stations	
		and epicenters of historical and recent	
		medium to large earthquakes; B. epicenters	
		of small earthquakes.	4
Fig.	(1-2)	Epicentral distribution of all earthquakes,	
		focal mechanisms of principal earthquakes	
		and active seismic trends.	5
Fig.	(1-3)	Intensity distribution of the 14 November	
		1981 earthquake as located by HLW = Helwan;	
		NEIS = National Earthquake Information	
		Service and ISC = International Seismological	
•		Center.	7
Fig.	(1-4)	Epicentral distribution of the earthquakes	
		occurred in the northwestern area of the High	
		Dam Lake for the period from July, 1982 to	
		October, 1990.	9 .
Fig.	(1-5)	Water level fluctuations in Lake Nasser and	
		number of shocks during the period 1965-1981.	11
Fig.	(1-6)	Water level fluctuations in Lake Nasser and	
		number of earthquakes per 10 day intervals	
		during the period July 1982 to December 1984.	12

Fig. (1- 7)	Location map of (1981/1982) Aswan	
	microearthquake array and recorded	
	epicenters from 13 December 1981 to 6	
	July 1982. Location error < 5 Km.	15
Fig. (1-8)	Gravity map of Egypt.	17
Fig. (1~ 9)	Location map of heat flow sites in Egypt	
	and northern Red Sea.	19
Fig. (1-10)	Subsurface temperature data from the four	
	specially-drilled thermal-gradient	
	boreholes.	21
Fig. (1-11)	Local geodetic networks in the area	
	northwest of the High Dam Lake.	24
Fig. (1-12)	Geometric configuration of Kalabsha local	
4	geodetic network (16 benchmarks for	
	horizontal measurements and 2 levelling	
	lines crossing the Kalabsha fault).	25
Fig. (1-13)	Configuration of Seiyal local geodetic	
	network.	27
Fig. (2- 1)	Bouguer anomaly map of the Kalabsha and	•
	Seiyal areas.	36
Fig. (2- 2)	The scheme used for the regional-residual	
	separation.	46
Fig. (2- 3)	Residual anomaly map of the Kalabsha	
	and Seiyal areas.	4.0

Fig.	(2-4)	Faults inferred from residual anomaly	
		map of the area.	50
Fig.	(2-5)	Regional anomaly map of the Kalabsha	
		and Seiyal areas.	52
Fig.	(2-6)	Faults inferred from regional anomaly	
		map of the area.	53
Fig.	(3-1)	Filtered regional gravity map of the	
		Kalabsha and Seiyal areas, using	
		8-unit regional filter.	71
Fig.	(3-2)	Filtered regional gravity map of the	
		Kalabsha and Seiyal areas, using	
		16-unit regional filter.	72
Fig.	(3-3)	Filtered regional gravity map of the	
•		Kalabsha and Seiyal areas, using	
		21.3-unit regional filter.	74
Fig.	(3-4)	Filtered residual gravity map of the	
		kalabsha and Seiyal areas, using	
		8-unit residual filter.	76
Fig.	(3-5)	Filtered residual gravity map of the	
		Kalabsha and Seiyal areas, using	
		16-unit residual filter.	78
Fig.	(3-6)	Filtered residual gravity map of the	
		Kalabsha and Seiyal areas, using	
		21.3-unit residual filter.	79

Fig.	(3- 7)	Gravity map filtered with an 8- to	
		16-units band-pass filter.	81
Fig.	(3- 8)	Gravity map filtered with an 16- to	
		21.3-units band-pass filter.	83
Fig.	(3- 9)	Gravity map filtered with an 8- to	
		21.3-units band-pass filter.	84
Fig.	(3-10)	Faults inferred from regional gravity map	
		filtered through an 21.3-unit regional	
		filter.	86
Fig.	(3-11)	Faults inferred from residual gravity map	
		filtered through an 8-unit residual filter.	87 -
Fig.	(3-12)	Faults inferred from gravity map filtered	
_		through an 8- to 21.3-unit band-pass filter.	89
Fig.	(4- 1)	A set of master curves corresponding to the	
		geological models of the assumed faults at	
		the proposed depths.	96
Fig.	(4- 2)	Map showing the fault elements dissecting the	
		sedimentary section and the basement complex.	98
Fig.	(4- 3)	Azimuth-frequency diagram of the fault	
		elements dissecting the depth range of	
		the sedimentary section and the basement.	99
Fig.	(4- 4)	Map showing the fault elements	
		dissecting the depth range of the	
		shallower zone, less than 2.0 km.	101