# AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

#### ELECTRICAL POWER AND MACHINES DEPARTMENT

### MICROCOMPUTER BASED ARTIFICIAL INTELLIGENT CONTROL STRATEGIES FOR WIND AND PHOTOVOLTAIC SOLAR ENERGY CONVERSION AND UTILITY INTERFACE SCHEMES

A Thesis Submitted in Fulfilment for the Requirement of the Degree of Doctor of Philosophy

in

Electrical Power and Machines
To Ain Shams University, Faculty of Engineering,
Elect. Power & Machines Dept.

BY

#### **HUSSEIN MOHAMED MASHALY**

B. Sc. in Elect. Eng., Ain Shams University, 1985 M. Sc. in Elect. Eng., Ain Shams University, 1989

## Supervised by

Prof. Dr. Ahmed A. El-Sattar

Dr. Mohamed M. Mansour

52341

Electrical Power and Machines Dept., Faculty of Engineering, Ain Shams University, Cairo, Egypt

Prof. Dr. Adel M. Sharaf

Department of Electrical Engineering University of New Brunswick, Canada

**CAIRO 1994** 

#### **EXAMINER COMMITTEE**

Name, Title & Affiliation

Signature

M. A. halk

#### 1-Prof. Dr. Mohamed Ashraf Madkour

Professor, Systems and Computer Engineering Dept.,

Faculty of Engineering, Al-Azhar University.

#### 2-Prof. Dr. Ali Kamel El-Kharashi

Professor, Dept. of Electrical power and Machines,

Faculty of Engineering, Ain Shams University.

#### 3-Prof. Dr. Adel Mahmoud Sharaf

Brunswick, Fredericton, Canada.

Dept. of Electrical Engineering, University of New A.M. & Shapering

#### 4-Dr. Mohamed Mohamed Mansour

Associate Professor, Dept. of Electrical power and

Machines, Faculty of Engineering, Ain Shams

University.



STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Doctor of

Philosophy in Electrical Engineering.

The work included in this thesis is carried out by the author in the Department of

Electrical Power and Machines, Faculty of Engineering, Ain Shams University, Egypt from

January, 1991 to May, 1992 and in the Department of Electrical Engineering, University of

New Brunswick, Canada from June, 1992 to June 1994.

No part of this thesis has been submitted for a degree or a qualification at any other

university or institution.

Date

: 25 / 12 / 1994

Signature : Hussein Mash Mashaly

Name : Hussein Mohamed Mashaly

The author acknowledges the Dept. of Electrical Power and Machines, Faculty of Engineering, Ain Shams University. Acknowledgement is dedicated to Eng. M. Yousef El-Sharkh for helping the author in the thesis writing.

I gratefully acknowledge my parents for their patience and understanding. I would like to thank my wife for her patience, hard working and encouragement during the research period.

#### ABSTRACT

The thesis presents novel artificial intelligent controllers for two renewable energy schemes interfaced to the utility grid. The proposed schemes are the photovoltaic-utility scheme and the wind driven induction generator-utility scheme. The proposed artificial intelligent based controllers are Fuzzy logic and artificial neural networks. The control objective is to utilize and track the reference power in the renewable energy schemes.

The main feature of the artificial intelligent controllers is to design a system with acceptable performance with presence of system uncertainties and nonlinearity. These controllers are model free design techniques, they need system heuristic data and system operator expertise.

The stochastic variations of solar insolation and wind velocity make difficulties for the renewable energy sources to commit firm supply of electricity. So some form of energy storage is required. In this thesis a renewable energy-utility interfacing technique is proposed in which the utility works as an energy storage with infinite capacity.

In wind energy schemes, a DC link is used to interface the induction generator power to the utility grid. The induction generator output is a variable voltage variable frequency. This output is rectified through a 3-phase uncontrolled bridge rectifier. Then injected to the utility grid through a smoothing reactor and a line commutated thyristor inverter. The injected power to the grid is regulated by varying the inverter firing angle. A d-q synchronously rotating frame model of the induction generator with the self excitation capacitor is utilized

in the simulation study.

In the solar energy scheme, a model of the photovoltaic solar array is utilized in the digital computer with its data acquisition card to emulate the PV array performance characteristics using a power amplifier. The output power from this PV emulator is injected to the grid through a smoothing reactor and a line commutated inverter.

Extensive digital simulations are carried out and a laboratory setup (based on microcomputer with its data acquisition card) of these schemes are implemented. The objective is to study the schemes performance with the supervision of the proposed fuzzy logic and artificial neural network controllers under wind velocity and solar insolation variations. Both simulation and experimental results confirm a robust and satisfactory performance in a wide range of operating conditions. The proposed controllers give superior performance over the conventional PI controller for the renewable energy schemes.

# CONTENTS

| ACKNOWLEDGEMENT ABSTRACT LIST OF FIGURES LIST OF SYMBOLS |                                                  | Page<br>i<br>iii<br>viii<br>viii<br>xiv |
|----------------------------------------------------------|--------------------------------------------------|-----------------------------------------|
| CHAPTER I                                                | INTRODUCTION                                     | 1                                       |
| I.1 GENI                                                 | ERAL                                             | I                                       |
| 1.2 RENE                                                 | EWABLE ENERGY                                    | 1                                       |
| 1.2                                                      | 2.1 Photovoltaic Solar Energy                    | 2                                       |
|                                                          | 2.2 Wind Energy                                  | 4                                       |
|                                                          | FICIAL INTELLIGENCE (AI)                         | 6                                       |
|                                                          | 3.1 Expert Systems (ES)                          | 8                                       |
|                                                          | 3.2 Fuzzy Logic (FL)                             | 8                                       |
|                                                          | 3.3 Artificial Neural Networks (ANN)             | 9                                       |
|                                                          | 3.4 AI Controllers Implementation Requirements   | 10                                      |
|                                                          | TOUS WORK                                        | 10                                      |
|                                                          | 4.1 PV-Utility Scheme                            | 10                                      |
|                                                          | 4.2 Wind Energy: Wind Driven Induction Generator | 13                                      |
|                                                          | 4.3 Fuzzy Logic (FL)                             | 19                                      |
|                                                          | 4.4 Artificial Neural Networks (ANN)             | 21                                      |
|                                                          | IS OBJECTIVE                                     | 26                                      |
| 1.6 THES                                                 | IS OUTLINE                                       | 28                                      |
| CHAPTER II FU                                            | ZZZY LOGIC FOR PROCESS CONTROL                   | 30                                      |
| 2.1 GENE                                                 | ERAL                                             | 30                                      |
| 2.2 FUZZ                                                 | Y SETS                                           | 30                                      |
| 2.3 FUZZ                                                 | Y LOGIC CONTROLLER                               | 35                                      |
| 2.4 FLC I                                                | FOR CONTROLLING THE INJECTED POWER TO THE GRID   | 36                                      |
| 2.4                                                      | 1.1 Fuzzificattion Process                       | 37                                      |
|                                                          | 2.2 Knowledge Base                               | 38                                      |
|                                                          | 3.3 Decision Making                              | 41                                      |
|                                                          | .4 Defuzzification Process                       | 44                                      |
|                                                          | ADVANTAGES                                       | 45                                      |
|                                                          | LIMITATIONS                                      | 45                                      |
| 2.7 WHEN                                                 | N FLC CAN BE USED                                | 46                                      |
| CHAPTER III                                              | ARTIFICIAL NEURAL NETWORKS                       | 47                                      |
| 3.1 GENE                                                 | RAL                                              | 47                                      |
| 3.2 BIOLO                                                | OGICAL AND ARTIFICIAL NEURAL NETWORK             | 47                                      |
| 3.3 ARTII                                                | FICIAL NEURONS                                   | 47                                      |
| 3.4 ACTIV                                                | VATION FUNCTIONS                                 | 49                                      |
| 3.5 NEUR                                                 | AL NETWORK TOPOLOGY                              | 51                                      |

| 3.5.3      | l Feed-Forward Networks                               | 52  |
|------------|-------------------------------------------------------|-----|
| 3.5.2      | 2 Recurrent Networks                                  | 53  |
| 3.6 ARTIFI | CIAL NEURAL NETWORKS TRAINING                         | 53  |
| 3.6.1      | Supervised Learning                                   | 55  |
| 3.6.2      | 2 Unsupervised Learning                               | 55  |
| 3.7 MULTI  | -LAYER FEED-FORWARD NETWORK LEARNING                  | 55  |
| ALGORI     | THM                                                   |     |
| 3.7.1      | The Generalized Delta Rule                            | 56  |
| 3.7.2      | 2 Back-Propagation Algorithm                          | 61  |
|            | TRUCTURE DESIGN                                       | 62  |
| 3.9 NEURA  | L NETWORKS IN CONTROL SYSTEMS                         | 64  |
| 3.9.1      | Identification of Systems Models                      | 65  |
| 3.9.2      | 2 Direct Inverse Control                              | 66  |
|            | B Direct Adaptive Control                             | 72  |
|            | On-Line Training Algorithm                            | 73  |
| 3.10 OFF-L | INE TRAINING WITH MATLAB                              | 76  |
| CHAPTER IV | PHOTOVOLTAIC-UTILITY INTERFACING SCHEME               | 81  |
|            | WITH AI-BASED CONTROLLERS                             |     |
| 4.1 GENER  | AL                                                    | 81  |
|            | LAR ARRAY MODELLING                                   | 81  |
|            | VOLTAIC-UTILITY INTERFACING SCHEME                    | 86  |
|            | MIC MODELLING OF PV-UTILITY SCHEME                    | 88  |
|            | Model of the PV Array                                 | 88  |
|            | Models of the DC Link and Inverter                    | 88  |
|            | LOGIC CONTROLLER FOR THE PV SCHEME                    | 89  |
|            | Numerical Simulation                                  | 89  |
|            | Experimental Implementation                           | 93  |
|            | CIAL NEURAL NETWORKS CONTROLLERS                      | 99  |
|            | Numerical Simulation                                  | 102 |
| 4.6.2      | Experimental Implementation                           | 102 |
| CHAPTER V  | INDUCTION GENERATOR-UTILITY INTERFACING               | 111 |
|            | SCHEME WITH AI-BASED CONTROLLERS                      |     |
| 5.1 GENER  | AL                                                    | 111 |
|            | OCESS OF SELF EXCITATION IN INDUCTION GENERATOR       | 111 |
|            | TION GENERATOR DYNAMIC MODELLING                      | 112 |
| 5.3.1      | Axes Transformation                                   | 112 |
| 5.3.2      | Preferred Reference Frames                            | 114 |
| 5.3.3      | Induction Generator Voltage Equations                 | 115 |
| 5.3.4      | Voltage Equations in the Synchronously Rotating Frame | 115 |
|            | Self Excitation Capacitor Model                       | 121 |
| 5.4 DYNAN  | MC MODELLING OF THE INTERFACING SCHEME                | 123 |
| 5.5 FUZZY  | LOGIC CONTROLLER                                      | 128 |
| 5.5.1      | Numerical Simulation                                  | 128 |
| 5.5.2      | Experimental Implementation                           | 135 |
|            | CIAL NEURAL NETWORKS CONTROLLERS                      | 143 |

| 5.6.         | Numerical Simulation                                     | 148 |
|--------------|----------------------------------------------------------|-----|
| 5.6.2        | 2 Experimental Implementation                            | 149 |
| CHAPTER VI   | CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH      | 160 |
| REFERENCES   |                                                          | 163 |
| PUBLICATIONS |                                                          | 170 |
| APPENDIX I   | SCHEMES PARAMETERS                                       | 171 |
| APPENDIX II  | STEADY-STATE ANALYSIS OF STAND ALONE INDUCTION GENERATOR | 175 |
| APPENDIX III | SOFTWARE LISTING                                         | 186 |

# LIST OF FIGURES

| Figure No. |                                                                                    | Page       |
|------------|------------------------------------------------------------------------------------|------------|
| Fig. 2.1   | Diagrammatic representation of a crisp set.                                        | 32         |
| Fig. 2.2   | Diagrammatic representation of a fuzzy set.                                        | 32         |
| Fig. 2.3   | Basic operations of two fuzzy sets.                                                | 34         |
|            | (a) Defined fuzzy sets A and B.                                                    |            |
|            | (b) Union of A and B.                                                              |            |
|            | (c) Intersection of A and B.                                                       |            |
|            | (d) Complement of A.                                                               |            |
| Fig. 2.4   | Fuzzy controller structure.                                                        | 39         |
| Fig. 2.5   | Diagrammatic representation of the fuzzy sets.                                     | 39         |
| Fig. 2.6   | Rules lock up table in the PE-CPE space.                                           | 42         |
| Fig. 2.7   | Processing of rules 1 and 2 in the FLC.                                            | 43         |
| Fig. 3.1   | Biological neuron.                                                                 | 48         |
| Fig. 3.2   | Basic processing unit in an ANN (neuron).                                          | 48         |
| Fig. 3.3   | Neurons activation functions.                                                      | 50         |
| Fig. 3.4   | Two-layer feed-forward network.                                                    | 54         |
| Fig. 3.5   | A single-layer recurrent network.                                                  | 54         |
| Fig. 3.6   | Multi-layer feed-forward ANN with the error back-propagation.                      | 57         |
| Fig. 3.7   | Flow chart of the back-propagation training algorithm.                             | 63         |
| Fig. 3.8   | Identification of a plant model.                                                   | 67         |
| Fig. 3.9   | Identification of a plant inverse dynamic model.                                   | 67         |
| Fig. 3.10  | Power plant inverse dynamic model identification.                                  | 69         |
| Fig. 3.11  | Direct inverse control (no weights updating) and Direct                            | 70         |
| E: 0.10    | adaptive on-line control with weights updating.                                    | <b>7</b> 1 |
| Fig. 3.12  | Multi-layer feed-forward network.                                                  | 71         |
| Fig. 3.13  | PV time series function learning (# of iterations=10000 &                          | 78         |
| Tin 2.14   | learning rate=1.0e-5).                                                             | 70         |
| Fig. 3.14  | Output vector errors (# of iterations=10000 & learning rate=1.0e-5).               | 79         |
| Fig. 3.15  | PV time series function learning (# of iterations=50000 & learning rate=1.0e-4).   | 80         |
| Fig. 4.1   | Solar Cell equivalent circuit.                                                     | 83         |
| Fig. 4.2   | PV array voltage-current characteristics at different S, and T=301k°.              | 85         |
| Fig. 4.3   | PV array power-current characteristics at different S <sub>r</sub> and T=301k°.    | 85         |
| Fig. 4.4   | Photovoltaic-utility interfacing scheme.                                           | 87         |
| Fig. 4.5   | PV scheme simulation performance with the FLC.                                     | 91         |
|            | (a) PV array power $P_{pv}$ .                                                      |            |
|            | (b) Inverter control voltage V <sub>c</sub> and PV array current I <sub>pv</sub> . |            |
|            | (c) Unit step disturbance in the solar insolation level $S_r$ .                    |            |
|            | (d) PV array voltage V <sub>ov</sub> .                                             |            |
| Fig. 4.6   | PV scheme simulation performance with the PI controller.                           | 92         |
|            | (a) PV array power P <sub>pv</sub> .                                               |            |
|            | (b) Inverter control voltage V <sub>c</sub> and PV array current I <sub>ov</sub> . |            |
|            | (c) Solar insolation level S <sub>r</sub> .                                        |            |
|            | (d) PV array voltage V <sub>pv</sub> .                                             |            |
| Fig. 4.7   | Experimental setup of the PV-utility interfacing scheme.                           | 94         |

| Fig. 4.8  | Line commutated inverter DC voltage waveform.                                                | 96  |
|-----------|----------------------------------------------------------------------------------------------|-----|
| Fig. 4.9  | PV array voltage waveform.                                                                   | 96  |
| Fig. 4.10 | PV scheme experimental performance with the FLC.                                             | 97  |
|           | (a) PV array power P <sub>pv</sub> .                                                         |     |
|           | (b) Inverter control voltage V <sub>c</sub> and PV array current I <sub>pv</sub> .           |     |
|           | (c) Solar insolation level S <sub>r</sub> .                                                  |     |
|           | (d) PV array voltage V <sub>pv</sub> .                                                       |     |
| Fig. 4.11 | PV scheme experimental performance with the PI controller.                                   | 98  |
|           | (a) PV array power P <sub>pv</sub> .                                                         |     |
|           | (b) Inverter control voltage $V_c$ and PV array current $I_{pv}$ .                           |     |
|           | (c) Solar insolation level $S_r$ .                                                           |     |
|           | (d) PV array voltage V <sub>pv</sub> .                                                       |     |
| Fig. 4.12 | PV scheme experimental performance with the FLC for                                          | 100 |
|           | a step change of S <sub>r</sub> from 0.04 to 0.09 to 0.04 W/Cm <sup>2</sup> .                |     |
|           | (a) PV array power P <sub>pv</sub> .                                                         |     |
|           | (b) Inverter control voltage V <sub>c</sub> and PV array current I <sub>pv</sub> .           |     |
|           | (c) Solar insolation level S <sub>r</sub> .                                                  |     |
|           | (d) PV array voltage V <sub>pv</sub> .                                                       |     |
| Fig. 4.13 | Learning of the inverse dynamic model of the PV scheme (input-                               | 101 |
|           | output patterns are generated by the FLC as time passes with a                               |     |
|           | rate of 20 pattern/second).                                                                  |     |
| Fig. 4.14 | PV scheme simulation performance with the direct adaptive ANN                                | 103 |
|           | controller for a step change of S <sub>r</sub> from 0.04 to 0.08 to 0.04 W/Cm <sup>2</sup> . |     |
|           | (a) PV array power $P_{pv}$ .                                                                |     |
|           | (b) Inverter control voltage $V_c$ and PV array current $I_{pv}$ .                           |     |
|           | (c) Solar insolation level S <sub>r</sub> .                                                  |     |
|           | (d) PV array voltage V <sub>pv</sub> .                                                       |     |
| Fig. 4.15 | On-line weights and biases adaptation of the PV scheme                                       | 104 |
|           | with the direct adaptive ANN controller.                                                     |     |
|           | (a) Hidden layer bias.                                                                       |     |
|           | (b) Output layer bias.                                                                       |     |
|           | (c) Typical weight from input to hidden layer.                                               |     |
|           | (d) Typical weight from hidden to output layer.                                              |     |
| Fig. 4.16 | PV scheme experimental performance with the direct inverse ANN                               | 106 |
|           | controller for a step change of $S_r$ from 0.04 to 0.09 to 0.04 W/Cm <sup>2</sup> .          |     |
|           | (a) PV array power $P_{pv}$ .                                                                |     |
|           | (b) Inverter control voltage $V_c$ and PV array current $I_{pv}$ .                           |     |
|           | (c) Solar insolation level S <sub>r</sub>                                                    |     |
|           | (d) PV array voltage V <sub>pv</sub> .                                                       |     |
| Fig. 4.17 | PV scheme experimental performance with the direct inverse ANN                               | 107 |
|           | controller for a step change of $S_r$ from 0.025 to 0.09 to 0.025 W/Cm <sup>2</sup> .        |     |
|           | (a) PV array power $P_{pv}$ .                                                                |     |
|           | (b) Inverter control voltage $V_c$ and PV array current $I_{pv}$ .                           |     |
|           | (c) Solar insolation level S <sub>r</sub> .                                                  |     |
|           | (d) PV array voltage V <sub>pv</sub> .                                                       |     |
| Fig. 4.18 | PV scheme experimental performance with the direct adaptive ANN                              | 108 |
|           | controller for a step change of $S_r$ from 0.04 to 0.09 to 0.04 W/Cm <sup>2</sup> .          |     |
|           | (a) PV array power $P_{nv}$ .                                                                |     |

|                      | <ul> <li>(b) Inverter control voltage V<sub>c</sub> and PV array current I<sub>pv</sub>.</li> <li>(c) Solar insolation level S<sub>r</sub>.</li> </ul> |            |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Fig. 4.19            | (d) PV array voltage V <sub>pv</sub> . PV scheme experimental performance with the direct adaptive ANN                                                 | 109        |
| 11g. 4.17            | controller for a step change of S <sub>r</sub> from 0.025 to 0.09 to 0.025 W/Cm <sup>2</sup> .                                                         | 107        |
|                      | (a) PV array power $P_{pv}$ .                                                                                                                          |            |
|                      | (b) Inverter control voltage $V_c$ and PV array current $I_{pv}$ .                                                                                     |            |
|                      | (c) Solar insolation level S <sub>r</sub> .                                                                                                            |            |
|                      | (d) PV array voltage V <sub>pv</sub> .                                                                                                                 |            |
| Fig. 5.1             | Arbitrary a-b-c to d-q axes transformation.                                                                                                            | 113        |
| Fig. 5.2             | Induction generator d-q equivalent circuits at synchronously                                                                                           | 117        |
|                      | rotating frame.                                                                                                                                        |            |
|                      | (a) q <sup>e</sup> -axis circuit.                                                                                                                      |            |
|                      | (b) de-axis circuit.                                                                                                                                   |            |
| Fig. 5.3             | Self excitation capacitor in the a-b-c axes frame.                                                                                                     | 122        |
| Fig. 5.4             | Equivalent circuit of self excitation capacitor in the d-q axes frame.                                                                                 | 122        |
|                      | (a) d-axis circuit.                                                                                                                                    |            |
| F:- 5.5              | (b) q-axis circuit.                                                                                                                                    | 124        |
| Fig. 5.5             | Simulation building up of the phase voltage V <sub>a</sub> and the stator                                                                              | 124        |
| Ei. 56               | q axis voltage V <sub>qs</sub> .                                                                                                                       | 124        |
| Fig. 5.6<br>Fig. 5.7 | Experimental building up of the phase voltage V <sub>a</sub> .  Induction Generator-utility interfacing scheme.                                        | 124<br>126 |
| Fig. 5.7             | Simulation results of the induction generator scheme with the FLC.                                                                                     | 130        |
| 11g. 5.6             | (a) DC link power $P_{DC}$ .                                                                                                                           | 150        |
|                      | (b) Shaft torque T <sub>L</sub> disturbance.                                                                                                           |            |
|                      | (c) Bridge rectifier DC voltage side V <sub>R</sub> .                                                                                                  |            |
|                      | (d) Line commutated inverter DC voltage side V <sub>I</sub> .                                                                                          |            |
| Fig. 5.9             | Simulation results of the induction generator scheme with the FLC.                                                                                     | 131        |
| 5.                   | (a) Electromagnetic torque $T_e$ .                                                                                                                     |            |
|                      | (b) Shaft torque $T_L$ .                                                                                                                               |            |
|                      | (c) Rotor electrical speed w <sub>r</sub> .                                                                                                            |            |
|                      | (d) Stator frequency w <sub>s</sub> .                                                                                                                  |            |
| Fig. 5.10            | Simulation results of the induction generator scheme with the FLC.                                                                                     | 132        |
| _                    | (a) Inverter control voltage V <sub>C</sub>                                                                                                            |            |
|                      | (b) Inverter firing angle $\alpha_i$ .                                                                                                                 |            |
|                      | (c) DC link current I <sub>DC</sub> .                                                                                                                  |            |
|                      | (d) Phase A voltage V <sub>a</sub> .                                                                                                                   |            |
| Fig. 5.11            | Simulation results of the induction generator scheme with the FLC.                                                                                     | 133        |
|                      | (a) Stator q-axis current i <sub>qs</sub> .                                                                                                            |            |
|                      | (b) Stator d-axis current i <sub>ds</sub> .                                                                                                            |            |
|                      | (c) Rotor q-axis current i <sub>qr</sub> .                                                                                                             |            |
|                      | (d) Rotor d-axis current i <sub>dr</sub> .                                                                                                             |            |
| Fig. 5.12            | Simulation results of the induction generator scheme with the FLC.                                                                                     | 134        |
|                      | (a) Stator q-axis flux linkage Ψqs.                                                                                                                    |            |
|                      | (b) Stator d-axis flux linkage Yds.                                                                                                                    |            |
|                      | (c) Rotor q-axis flux linkage Ψqr.                                                                                                                     |            |
| TO: 6.35             | (d) Rotor d-axis flux linkage Ydr.                                                                                                                     |            |
| Fig. 5.13            | Oscillogram of the induction generator line to line voltage.                                                                                           | 137        |

| Fig. 5.14 | Oscillogram of the induction generator scheme DC link voltage V <sub>R</sub> .     | 137 |
|-----------|------------------------------------------------------------------------------------|-----|
| Fig. 5.15 | Oscillogram of the induction generator scheme DC link current I <sub>DC</sub> .    | 138 |
| Fig. 5.16 | Oscillogram of the induction generator scheme inverter DC voltage V <sub>I</sub> . | 138 |
| Fig. 5.17 | Induction generator scheme experimental performance for a                          | 139 |
|           | change in shaft speed from 1247 to 1342 (rpm) with the FLC.                        |     |
|           | (a) DC link power $P_{DC}$ .                                                       |     |
|           | (b) DC link current I <sub>DC</sub> .                                              |     |
| Fig. 5.18 | Induction generator scheme experimental performance for a                          | 140 |
|           | change in shaft speed from 1217 to 1312 (rpm) with the FLC.                        |     |
|           | (a) DC link power $P_{DC}$ .                                                       |     |
|           | (b) DC link current I <sub>DC</sub> .                                              |     |
| Fig. 5.19 | Induction generator scheme experimental performance for a                          | 141 |
|           | change in shaft speed from 1203 to 1293 (rpm) with the FLC.                        |     |
|           | (a) DC link power P <sub>DC</sub> .                                                |     |
|           | (b) DC link current I <sub>DC</sub> .                                              |     |
| Fig. 5.20 | Induction generator scheme experimental performance for a                          | 142 |
|           | change in shaft speed from 1247 to 1342 (rpm) with the FLC.                        |     |
|           | (a) DC link voltage V <sub>R</sub> .                                               |     |
|           | (b) Inverter firing angle α <sub>i</sub> .                                         |     |
| Fig. 5.21 | Induction generator scheme experimental performance for a change                   | 144 |
|           | in shaft speed from 1247 to 1342 (rpm) with the PI controller.                     |     |
|           | (a) DC link power $P_{DC}$ .                                                       |     |
|           | (b) DC link current $I_{DC}$ .                                                     |     |
| Fig. 5.22 | Induction generator scheme experimental performance for a change                   | 145 |
|           | in shaft speed from 1217 to 1312 (rpm) with the PI controller.                     |     |
|           | (a) DC link power $P_{DC}$ .                                                       |     |
|           | (b) DC link current $I_{DC}$                                                       |     |
| Fig. 5.23 | Induction generator scheme experimental performance for a change                   | 146 |
|           | in shaft speed from 1203 to 1293 (rpm) with the PI controller.                     |     |
|           | (a) DC link power $P_{DC}$ .                                                       |     |
|           | (b) DC link current $I_{DC}$                                                       |     |
| Fig. 5.24 | Results of the off-line identification of the inverse dynamic model of             | 147 |
|           | the induction generator scheme (input-output patterns are generated                |     |
|           | by the FLC as time passes with a rate of 20 pattern/second).                       |     |
| Fig. 5.25 | Simulation results of the induction generator scheme                               | 151 |
|           | with the direct adaptive ANN controller.                                           |     |
|           | (a) DC link power $P_{DC}$ .                                                       |     |
|           | (b) Shaft torque T <sub>L</sub> .                                                  |     |
|           | (c) Bridge rectifier DC voltage side V <sub>R</sub> .                              |     |
|           | (d) Line commutated inverter DC voltage side V <sub>I</sub> .                      |     |
| Fig. 5.26 | Simulation results of the induction generator scheme                               | 152 |
|           | with the direct adaptive ANN controller.                                           |     |
|           | (a) Electromagnetic torque T <sub>e</sub> .                                        |     |
|           | (b) Shaft torque T <sub>L</sub> .                                                  |     |
|           | (c) Rotor electrical speed w <sub>r</sub> .                                        |     |
|           | (d) Stator frequency w <sub>s</sub> .                                              |     |
| Fig. 5.27 | Simulation results of the induction generator scheme                               | 153 |
|           | with the direct adaptive ANN controller                                            |     |

|           | (a) Inverter control voltage V <sub>C.</sub>                                                            |     |
|-----------|---------------------------------------------------------------------------------------------------------|-----|
|           | (b) Inverter firing angle α <sub>1</sub> .                                                              |     |
|           | (c) DC link current I <sub>DC</sub> .                                                                   |     |
| Fig. 5.28 | On-line network weights and biases adaptation for the induction                                         | 154 |
|           | generator scheme with the direct adaptive ANN controller.                                               |     |
|           | (a) Hidden layer bias.                                                                                  |     |
|           | (b) Output layer bias.                                                                                  |     |
|           | (c) Typical weight from input to hidden layer.                                                          |     |
| T'' 5 00  | (d) Typical weight from hidden to output layer.                                                         | 166 |
| Fig. 5.29 | Induction generator scheme experimental performance for a change                                        | 155 |
|           | in shaft speed from 1247 to 1342 (rpm) with the direct inverse ANN controller.                          |     |
|           | (a) DC link power P <sub>DC</sub> .                                                                     |     |
|           | (b) DC link current I <sub>DC</sub> .                                                                   |     |
| Fig. 5.30 | Induction generator scheme experimental performance for a change                                        | 156 |
|           | in shaft speed from 1217 to 1312 (rpm) with the direct inverse ANN                                      |     |
|           | controller.                                                                                             |     |
|           | (a) DC link power $P_{DC}$ .                                                                            |     |
|           | (b) DC link current I <sub>DC</sub> .                                                                   |     |
| Fig. 5.31 | Induction generator scheme experimental performance for a change                                        | 157 |
|           | in shaft speed from 1247 to 1342 (rpm) with the direct adaptive ANN                                     |     |
|           | controller.                                                                                             |     |
|           | (a) DC link power $P_{DC}$ .                                                                            |     |
| Ti        | (b) DC link current I <sub>DC</sub> .                                                                   |     |
| Fig. 5.32 | Induction generator scheme experimental performance for a change                                        | 158 |
|           | in shaft speed from 1217 to 1312 (rpm) with the direct adaptive ANN                                     |     |
|           | controller.                                                                                             |     |
|           | <ul> <li>(a) DC link power P<sub>DC</sub>.</li> <li>(b) DC link current I<sub>DC</sub>.</li> </ul>      |     |
| Fig. 5.33 | (b) DC link current I <sub>DC</sub> .  Induction generator scheme experimental performance for a change | 159 |
| 11g. 0.00 | in shaft speed from 1203 to 1293 (rpm) with the direct adaptive ANN                                     | 139 |
|           | controller.                                                                                             |     |
|           | (a) DC link power P <sub>DC</sub> .                                                                     |     |
|           | (b) DC link current I <sub>DC</sub> .                                                                   |     |
| Fig. A.1  | Experimental setup photograph.                                                                          | 174 |
| Fig. A.2  | Equivalent circuit of capacitor self excited induction                                                  | 179 |
|           | generator with local load.                                                                              |     |
| Fig. A.3  | Variations of $V_g / F$ with $X_m$ .                                                                    | 179 |
| Fig. A.4  | Induction generator no-load equivalent circuit.                                                         | 181 |
| Fig. A.5  | Induction generator steady state performance at no load.                                                | 181 |
|           | (a) Phase voltage versus rotor speed.                                                                   |     |
|           | (b) Stator frequency versus rotor speed.                                                                |     |
| Fig. A.6  | Induction generator steady state performance with                                                       | 184 |
|           | resistive load $R_L=63 \Omega$                                                                          |     |
|           | (a) Phase voltage versus rotor speed.                                                                   |     |
|           | (b) Output power versus rotor speed.                                                                    |     |
|           | (c) Phase voltage versus output power.                                                                  |     |