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ABSTRACT

The thesis presents novel artificial intelligent controllers for two renewable energy
schemes interfaced to the utility grid. The proposed schemes are the photovoltaic-utility
scheme and the wind driven induction generator-utility scheme. The proposed artificial
intelligent based controllers are Fuzzy logic and artifictal neural networks. The control

objective is to utilize and track the reference power in the renewable energy schemes.

The main feature of the artificial intelligent controllers is to design a system with
acceptable performance with presence of system uncertainties and nonlinearity. These
controllers are model free design techniques, they need system heuristic data and system

operator expertise.

The stochastic variations of solar insolation and wind velocity make difficulties for the
renewable energy sources to commit firm supply of electricity. So some form of energy
storage is required. In this thesis a renewable energy-utility interfacing technique 1s proposed

in which the utility works as an energy storage with infinite capacity.

In wind energy schemes, a DC link is used to interface the induction generator power
to the utility grid. The induction generator output is a variable voltage variable frequency.
This output is rectified through a 3-phase uncontrolled bridge rectifier. Then injected to the
utility grid through a smoothing reactor and a line commutated thyristor inverter. The injected
power to the grid is regulated by varying the inverter firing angle. A d-q synchronously

rotating frame model of the induction generator with the self excitation capacitor is utilized

it
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in the simulation study.

In the solar energy scheme, a model of the photovoltaic solar array is utilized in the
digital computer with its data acquisition card to emulate the PV array performance
characteristics using a power amplifier. The output power from this PV emulator is injected

to the grid through a smoothing reactor and a line commutated inverter.

Extensive digital simulations are carried cut and a laboratory setup (based on
microcomputer with its data acquisition card) of these schemes are implemented. The
objective is to study the schemes performance with the supervision of the proposed fuzzy
logic and artificial neural network controllers under wind velocity and solar insolation
variations. Both simulation and experimental results confirm a robust and satisfactory
performance in a wide range of operating conditions. The proposed controllers give superior

performance over the conventional PI controller for the renewable energy schemes.

v
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