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ABSTRACT 

The thesis presents novel artificial intelligent controllers for two renewable energy 

schemes interfaced to the utility grid. The proposed schemes are the photovoltaic-utility 

scheme and the wind driven induction generator-utility scheme. The proposed artificial 

intelligent based controllers are Fuzzy logic and artiftcial neural networks. The control 

objective is to utilize and track the reference power in the renewable energy schemes. 

The main feature of the artificial intelligent controllers is to design a system with 

acceptable performance with presence of system uncertainties and nonlinearity. These 

controllers are model free design techniques, they need system heuristic data and system 

operator expertise. 

The stochastic variations of solar insolation and wind velocity make difficulties for the 

renewable energy sources to commit firm supply of electricity. So some form of energy 

storage is required. In this thesis a renewable energy-utility interfacing technique is proposed 

in which the utility works as an energy storage with infinite capacity 

In wind energy schemes, a DC link is used to interface the induction generator power 

to the utility grid. The induction generator output is a variable voltage variable frequency. 

This output is rectified through a 3-phase uncontrolled bridge rectifier. Then injected to the 

utility grid through a smoothing reactor and a line commutated thyristor inverter. The injected 

power to the grid is regulated by varying the inverter firing angle. A d-q synchronously 

rotating frame model of the induction generator with the self excitation capacitor is utilized 

lll 



in the simulation study. 

In the solar energy scheme, a model of the photovoltaic solar array is utilized in the 

digital computer with its data acquisition card to emulate the PV array performance 

characteristics using a power amplifier. The output power from this PV emulator is injected 

to the grid through a smoothing reactor and a line commutated inverter. 

Extensive digital simulations are carried out and a laboratory setup (based on 

microcomputer with its data acquisition card) of these schemes are implemented. The 

objective is to study the schemes performance with the supervision of the proposed fuzzy 

logic and artificial neural network controllers under wind velocity and solar insolation 

variations. Both simulation and experimental results confirm a robust and satisfactory 

performance in a wide range of operating conditions. The proposed controllers give superior 

performance over the conventional PI controller for the renewable energy schemes. 
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