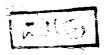
STUDIES ON PROMOTORS AND INHIBITORS OF IRON ABSORPTION IN BEVERAGES

THESIS


SUBMITTED IN PARTIAL FULFILMENT

OF THE REQUIREMENT

FOR THE DEGREE OF MASTER IN

Nutritionand Food Chemistry

To The
University College for Women
AIN SHAMS UNIVERSITY

BY

ZEINAB ABD EL-AAL SALEH
B.Sc. (Home Economic, Nutrition)

27268

Nutrition and Food Science Department National Research Centre

Dokki, Cairo

EGYPT

1988

STUDIES ON PROMOTORS AND INHIBITORS OF IRON ABSORPTION IN BEVERAGES

THESIS SUPERVISORS:

Prof. Dr. Saad K. Shehab

Prof. Dr. Fawzi A. El-Shobaki

Frof. Dr. Mahassen H. Abbassi Head of the Department of Nutrition and Food chemistry, University College for Women Ain Shams University. THESIS APPROVED

The candidate passed successfully the examination in the following courses:

- 1- Biochemistry.
- 2- Advanced Nutrition .
- 3- Microbiology .
- 4- Statistics.
- 5- German language.

ACKNOWLEDGMENT

I am indebted and extremely grateful to Professor Dr. SAAD KHALIL SHEHAB, Professor of Biochemistry, Ain Shams University College for Women, for his supervision, his great interest in the work, unfailing advice and valuable discussion.

Particular thanks and gratitude are due to Professor Dr. FAWZI AMIN EL-SHOBAKI, Professor of Nutritional Biochemistry, National Research Centre, for suggesting the work, valuable supervision, kind help, careful guidance, and continuous encouragement throughout this work. To him I owe a great deal for teaching me the art of being a scientific research worker.

Thanks and gratitude are extended to Dr. SORAYA T. EL-DAMHOUGI and Dr. NADIA SALEH, for their sincere help.

I would sincerely like to express my deepest thanks to the staff members of the Food Science and Nutrition Department (N.R.C.), for thier encouragement.

Thanks to the authorities of the National Research Centre, Cairo, Egypt, for providing facilities.

CONTENTS

	age
INTRODUCTION	1
REVIEW OF LITERATURE	3
* Mechanism of Iron Absorption	3
- Site of Absorption	3
- Stages of Absorption	4
- Mucosal Uptake of Iron	4
- Iron Transfer Across the Mucosal Cell	8
- Specificity of Iron-Transfer System	12
- Composition of the Transfer System	14
- Absorption of haem Iron	18
* Factors Affecting Iron Absorption and	
Bioavailability	21
1- Dietary Components	21
a) Enhancers	22
b) Inhibitors	25
2- The Effect of Dosage and Valency	33
3- Age and Growth	34
4- Level of Iron Stores	34
5- Rate of Erythropoiesis	35
6- Anaemia	35
7- Infection	36
8- Gastric Factors	36
O Pergraphia Cogrations	37

	ige
* Sources of Dietary Iron	39
* Iron Fortification	42
- The Iron Compound	42
- The Vehicle	46
- Bioavailability	51
* Identification of Beverages	59
MATERIAL AND METHODS	65
MATERIAL	65
METHODS	
Absorption experiments	68
Determination of Blood Haemoglobin Concentration	69
Determination of Serum Iron	69
Analysis of Beverages	72
- Determination of phytate	72
- Determination of Tannins	75
- Determination of Vitamin C (Ascorbic acid)	77
- Estimation of Iron	80
Statistical Analysis	80
RESULTS	82
Analysis of Beverages	82
Absorption and Distribution of Iron in the body	86
- Effect of Beverages from the Family "Umbelliferae"	
on Iron Absorption and Distribution	86
- Effect of Beverages from the Family "Leguminosae"	

INTRODUCTION

INTRODUCTION

Iron deficiency anaemia has been attributed to many etiological factors such as:

- a) Deficiency of dietary iron
- b) Low bioavailability of ingested iron.
- c) Intestinal malabsorption of iron.

In order to combat anaemia, these conditions have to be corrected, to realise a state of balance between supply and requirements.

Most of the naturally occurring forms of iron, particularly those from plant origin have poor or low bioavailability, which limit their proper use for haemoglobin synthesis.

Iron deficiency anaemia is a nutritional problem in developing countries (Dallman and Siimes, 1979). In Egypt the incidence of iron deficiency anaemia among school children is about 40% (Nutrition Institute, 1978). Those who suffer from iron deficiency, have to be supplied with certain foods or drinks that promote iron absorption. This necessitates, the search for such items of foods or drinks that have the property of promoting the absorption and utilization of iron.

Several beverages are consumed in our homes and sometimes many of them are offered to children and adults as a remedy from diseases such as diarrhea or common cold.

The aim of the present investigation is to study the effect of extracts of some beverages commonly used in our country on the absorption and utilization of iron.

REVIEW OF LITERATURE

REVIEW OF LITERATURE

Mechanism of Iron Absorption:

absorption: Although small amounts of of Site iron salts can be absorbed from the stomach et al.,1968), The ileum (Jacobs et al., 1966) and the colon (Chernelch et al., 1970), the most active site of absorption is the duodenum and the upper jejunum (Wheby, 1970). Ansari et al. (1977) observed that about 90% of the dose ferric chloride (59FeCl3) being absorbed in the first 20% of the small intestine of rat. There is a progressive decrease in the absorption rate from the duodenum to the terminal ileum (Van Campen and Mitchell, 1965), and studies with everted gut pouches suggest that this is a property of the mucosa, and not only to luminal factors such as pH (Manis ascribable and Schachter, 1962; Howard and Jacobs, 1972). of interest that the absorption rate in the ileum is high in neonatel rats, the decline to the adult level the epithelium changes at occurring when (Gallagher et al., 1973). It has been pointed out that the lower absorption rates of the distal small intestine may be compensated by a longer transit time through this part of the bowel (Booth, 1967), and prolonging the transit time with pharmacological agents does increase iron absorption in rats (Schade et al.,1969a). Under

normal circumstances, however, there is little doubt that iron is absorbed from the proximal small intestine than from the distal regions (Wheby and Crosby, 1963). This is true for haem iron as well (Wheby et al.,1970).

Stages of Absorption:

Absorption can be subdivided into at least two distinct steps, namely the entry of iron into the mucosal cell from the lumen of the gut "uptake" and its transfer from the nucosal cell into the body "transfer".

In experiments with rats, Wheby and co-workers (1964) noted that transfer was slower than uptake, more restricted to the duodenum, and affected to a greater degree by such factors as the size of the body iron stores and the quantity of iron in the diet. Moreover, not all the iron taken up from the lumen into the cells is necessarily transferred, in accordance with the body's need for iron, a variable proportion may be sequestered within the mucosal cell, and eventually discarded when the cell exfoliates (Conrad and Crosby, 1963; Charlton et al., 1965).

Mucosal Uptake of Iron:

The uptake of iron by the mucous membrane of the small intestine is a function of the concentration of iron within the lumen. When iron solutions are perfused through isolated duodenal loops of anaesthetised rats, the relationship between the concentration within the lumen and the quantity entering the mucose is linear over a 0.1-5.0 mM range (Thomson and Valberg,1971). While the relationship is linear, the slope of the line varies in accordance with the body's iron requirement, and it is clear that the latter influences the amount of iron which enters the mucosa from the lumen as well as the proportion which is subsequently transferred into the plasma.

In animal studies uptake is diminished if they have previously been given parentral iron preparations, and enhanced if they are iron deficient, pregnant or have been venesected. This has been demonstrated in vivo (Thomson and Valberg, 1971), with everted intestinal pouches in vitro (Howard and Jacobs, 1972) and with preparations of isolated mucosal cell brush borders (Kimber et al.,1973). Similar observations have also been made using human duodenal mucosa obtained by biopsy (Cox and Peter, 1978).

The greater uptake by the more proximal regions of the small intestine both <u>in vivo</u> and <u>in vitro</u> appears to be at least partly due to differences at the level of the initial contact of the iron with the mucous membrane (Bothwell <u>et al.,1979</u>). Electron microscopic studies suggest that the iron becomes attached to the

surface glycoproteins (the glycocalyx) of the border of the mucosal cells (Kimber et al., 1973). Brush borders from the cells of the proximal small intestine bind iron in preference to other metals such as cobalt or manganese, and the iron cannot be removed even by repeated washing; neither of these features is with brush borders from the more distal intestinal mucosa (Huebers et al., 1971b). These observations suggest that the more efficient uptake of iron in the proximal regions is associated with the presence of specific receptors for iron on the mucosal cell membranes. Moreover, it seems possible that variation in the number and distribution of these receptors may be part of the mechanism by which the absorption of food iron is adjusted to meet changing body iron needs, since preparations of isolated brush borders from the distal intestine iron deficient animals bind more iron than those from animals with normal iron stores, while proximal iron binding is inhibited in iron loaded (Greenberger et al., 1969).

The binding of iron by isolated brush borders is temperature dependent, but not affected by removing glucose or oxygen from the incubation medium (Kimber et al.,1973). The uptake of iron by everted gut pouches is, however, inhibited by anoxia as well as by a number