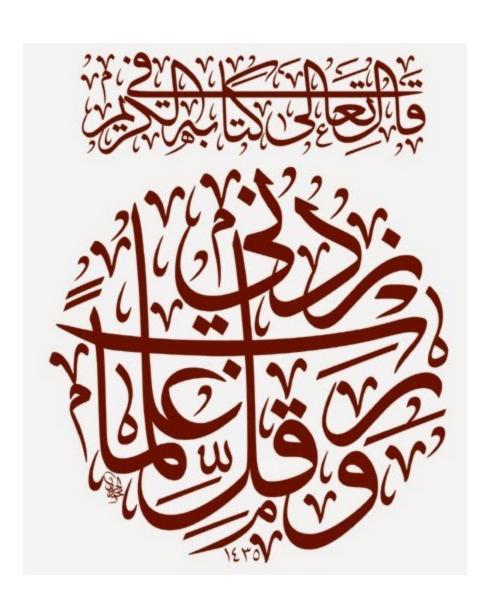
Management Of Complications Of Calcaneal Fractures

Essay
Submitted for partial fulfillment of master degree
In
Orthopedic surgery

By

Mahmoud Mohamed EL-Bakry (M.B.B.Ch)

Under the supervision of


Prof. Dr. Atef Mohamed El-Beltagy

Professor of Orthopedic surgery Faculty of Medicine Ain shams University

Dr. Abd El-Rady Mahmoud

Lecturer of Orthopedic surgery Faculty of Medicine Ain shams University

> Faculty of Medicine Ain Shams University 2015

Acknowledgment

First of all, I wish to offer my deepest gratitude to ALLAH for enabling me to achieve this work.

I would like to express my deepest gratitude to **Dr. Atef El Beltagy**, *Professor of Orthopedic Surgery*, *Faculty of Medicine*, *Ain Shams University*, for his keen supervision and guidance in this work to be completed.

I am very much grateful to **Dr. Abd El Rady Mahmoud, Lecturer** *of Orthopedic Surgery, Faculty of Medicine, Ain Shams University,* for his suggestion, valuable help and continuous advice to bring this work to its form.

Also, I am much grateful to Orthopedic Surgery Department of Faculty of Medicine, Ain Shams University for their support and educate.

Last but not least, I would like to express my endless gratitude to my family, and my friends for their everlasting love, care and support.

I am also grateful to every person who helped me to complete this work

Mahmoud El Bakry 2015

Contents

Introduction		
1		
	the	
3	 	
_	nics of calca	
5		
	 y of calcane	
12	 	
•	nt of calcane	
18		
	calcaneal	
35	 	
	tions of calcar	
60	 	
Summary		
95		
References		

97	
Arabic	Summary

List of figures

Figur	Comment	Pag
e		e
No.		No.
1	Calcaneus bone	5
2	Superior surface of calcaneus	6
3	Anterior surface of calcaneus	7
4	Posterior surface of calcaneus	8
5	Planter surface of left calcaneus	9
6	Lateral surface of calcaneus	9
7	Medial surface of calcaneus	10
8	Blood supply of the calcaneus	11
9	Medial view of the foot and the calcaneus	11
	nerve supply	
10	The incidence of calcaneal fractures in	12
	the 10 year age–sex cohorts	
11	Primary and secondry fracture line in	15
	tongue type fractures	
12	Sander's classification	16
13	Left foot with swelling and bruising	19
14	Lateral view of calcaneus show Bo"hler's	20
	angle and Gissane's angle	
15	Axial radiographs of the calcaneus	21
	demonstrating facet anatomy	
16	CT scan sagittal slice, Bo "hler and	22
	Gissane' angles are altered.	
17	CT-scan coronal slices.Intra-articular	22
	fracture of the calcaneus	
18	Three-dimensional reconstruction of the	23
	calcaneus	
19	Extended lateral approach	26
20	Open reduction and fixation by	27

	calcaneal plate	
21	Sustentacular approach	29
22	Minimally invasive approaches	30
23	Treatment of Calcaneal Fractures by the Ilizarov External Fixation Method	31
24	Sub-talar Fusion	32
25	Left foot and ankle Fracture Blister	37
26	Left foot with edema	37
27	Self-contained needle manometer system	38
28	Anteroposterior radiograph of right foot	39
	show A large exostosis in the lesion of peroneal tubercle	
29	Ultrasound image demonstrating peroneus longus tendinosis	40
30	Plain x-ray lateral view show upward displacement of the tuberosity	41
31	Swelling and redness of the involved RT leg	42
32	Axial CT scan demonstrating preoperative peroneal tendon dislocation	43
33	Eckert and Davis classification	44
34	Rt foot with Severe calcaneal osteomyelitis	47
35	Showing a foot that had apical wound necrosis with minor dehiscence	48
36	Lateral radiograph, showing erosion of the subtalar joint	48
37	Lateral radiograph of malunited calcaneus demonstrating loss of hindfoot height and loss of talar declination	50
38	The Stephens and Sanders classification	52

	system of calcaneal malunion	
39	Zwipp CT scan classification of calcaneal	53
39	fractures	33
40	Lateral and axial view radiographs	54
40	showing large plantar exostosis	34
41	(A) Weight-bearing lateral radiograph of	55
71	a patient with calcaneal malunion	33
	(B) Axial view of the malunited calcaneus	
	(C) Coronal CT scan demonstrating heel	
	widening	
42	The Coleman block test.	56
43	Exact goniometric measurements on	57
15	weight-bearing lateral radiograph	<i>5</i> /
44	A photograph of a patient's foot with the	61
	Cryo/Cuff compression dressing applied	0.1
45	Platzgummer method of tendon rerouting	63
46	Primary repair of acute peroneal tendon	64
	dislocation.	
47	Cross section of the skin demonstrating	69
	split thickness and full thickness skin	
	grafts	
48	Sagittal (A) and axial (B) computed	71
	tomography scans of the left foot	
	showing chronic osteomyelitis of the	
	calcaneus	
49	Intra-operative photographs showing	72
	extensive surgical debridement of the	
	necrotic bone.	
50	Plain lateral and axial radiographs of the	72
	calcaneus show filling of the calcaneal	
	defect and complete incorporation of the	
	calcium sulphate graft with the host bone	
51	The left medial incision wound at	74
<i>J</i> 1	initiation of EPIFLO	, T
52	The application of EPIFLO device under	74
<u> </u>	The application of LT IT LO device under	, T

	occlusive dressing	
53	The left medial incision wound at	75
	complete healing	
54	Dermagraft is a cryopreserved human	75
	fibroblast-derived dermal substitute	
55	(A) The modified L-shape approach; (B)	77
	the medial oblique approach	
56	(A, B) Preoperative X-rays of calcaneal	77
	malunion. (C, D) Postoperative X-rays in	
	1 year after in situ subtalar arthrodesis	
57	Posterior arthroscopic portals.	78
58	(A)Lateral fluoroscopy demonstrating the	79
	blunt trocar used for joint distraction and	
	extent of debridement to the sinus tarsi.	
	(B)Arthroscopic view of the blunt trocar	
	in place	
59	Positioning guide wire and fluoroscopy	79
	verification for screw placement	
60	Intraoperative photograph showing	80
	excision of the lateral wall exostosis.	
	Note the use of retractors to avoid	
	violation of the talofibular joint	0.1
61	Intraoperative photograph showing en	81
	bloc removal of the lateral wall exostosis.	0.1
62	(A-C) Preoperative X-rays and CT scans	81
	show significant collapse and varus	
	deformity of the calcaneus. (D-E)	
	Postoperative X-rays 2 years after the	
	reconstruction of calcaneal thalamus and	
(2	subtalar arthrodesis	02
63	A long extensile incision is required to	82
	adequately see the three hindfoot joints	
	during a single-incision medial-approach	
61	triple arthrodesis The posterior feast of the subtalar joint is	02
64	The posterior facet of the subtalar joint is	83

	easily seen once the posterior tibial	
	tendon is excised	
65	The talonavicular joint is prepared as	83
	usual through the medial incision	
66	A lamina spreader is used to widely open	84
	the talonavicular joint to gain exposure of	
	the calcaneocuboid joint across the foot	
67	(A) Wide L-shaped skin incision (dotted	85
	line) facilitated lateral wall ostectomy	
	decompression and Achilles tendon	
	lengthening. (B) Downward shift of	
	tuberosity fragment fixed with two	
	cancellous screws. The subtalar fusion	
	was also fixed with two cancellous	
	screws	
68	Lateral closing-wedge calcaneal	86
	osteotomy	
69	Intraoperative photograph showing	86
	completion of a Dwyer-type calcaneal	
	osteotomy for a type-III calcaneal	
	malunion with severe varus malalignment	
	of the hindfoot	
70	Incision on the lateral aspect of the	87
	calcaneus	
71	Drawing of a calcaneal osteotomy. The	88
	calcaneus is shifted ten millimeters	
	medially and is secured with a cannulated	
	screw	
72	Lateral radiograph, after the arthrodesis,	89
	showing successful subtalar fusion with	
	no evidence of ankle arthritis, a solid	
	calcaneotalar fusion	
	·	

73	Lateral radiograph, after bone-block distraction arthrodesis with insertion of fully threaded cannulated screws, showing successful subtalar fusion and improvement of the talar declination angle	89
74	This is the harvested 394-cm-sized tensor fascia lata from ipsilateral thigh	90
75	The fascia was carefully inserted into the articular surface after sufficiently extending the joint space with a lamina spreader	91
76	Tensor fascia lata was fixed at medial border with straight needle through the skin	91

INTRODUCTION

The calcaneus is the largest tarsal bone. It is Cuboidal in shape, its long axis is directed forward, upwards and laterally. It has four facets that contribute to anterior, middle, calcaneocuboid, and posterior facet joints. All of the facet joints as well as the height, width, and length of the calcaneus are important in normal hindfoot and ankle mechanics⁽¹⁾.

Calcaneal fractures are the most common tarsal fractures, constituting 2% of all fractures and 65% of all tarsal fractures, and 70% of these fractures are intra-articular fractures. Calcaneal fractures are usually caused by high-energy trauma. The configuration of the fracture is determined by the position of the foot when the fracture occurs, the bone quality, and the strength and direction of the angular and shear forces involved⁽²⁾.

Swelling and deformity are the main diagnostic symptoms and signs. Soft-tissue situation must be examined thoroughly to avoid skin complications if surgical treatment is expected to be applied, as skin necrosis has been published to occur in up to 43% of patients. Blisters commonly developed in displaced fractures⁽³⁾.

Radiological studies are the basis for a proper diagnosis, and therefore a guide for treatment. There are two main radiological projections: lateral and axial views Lateral projection. There are also two important radiographic landmarks on the lateral X-ray Bo"hler's angle assesses calcaneal height and joint depression And Gissane's angle is indicative of anterior, middle and posterior facets' relationship alteration. Axial projection. This projection is useful for evaluating varus deformity of the calcaneus, widening of the heel, step-off in the posterior facet and its relation with the sustentaculum tali. However, a CT scan for this purpose is more reliable⁽⁴⁾.

☐ Introduction

Essentially calcaneal fractures can be intra- or extraarticular. Extraarticular fractures affect either the anterior process – very rarely – or, most commonly, the tuberosity. The original easy classification by Essex-Lopresti into tongue-type and joint depression has persisted over the years. other classifications such as Sanders' CT coronal slice-based prognostic classification, it is limited to the posterior facet. According to this classification, the more comminution in the posterior facet, the worse the prognosis is⁽⁵⁾.

Goals of orthopedic treatment are to prevent chronic pain and arthritis by restoring calcaneal shape and joint congruency. Despite the fact that the calcaneus is the commonest tarsal bone fractured, many controversies exist in the literature regarding the management options. This stems from the fact that the understanding of the fracture pattern has evolved only recently, surgical approaches have lately been standardized, surgical timing has become more clear, and newer implants are regularly being introduced. Despite the significant advances, complications controversies related to this common fracture abound. The present paper looks at all aspects of modern management options of calcaneus fractures and tries to review the literature with regard to the controversial issues that still persist⁽⁶⁾.

Delayed or missed diagnosis of complications of calcaneus fracture may cause malfunction of the foot and lead to a life-altering event for some patients⁽⁷⁾. Injury to the sural nerve may occur using the lateral approach, while injury to the calcaneal branch of the posterior tibial nerve may occur using medial approach. The damage can cause neuroma or loss of sensation in the affected region. Nerve entrapment of the posterior tibial nerve can occur secondary to fracture mal-union. The incidence of wound dehiscence and apical necrosis is 10 –13% and osteomyelitis is 1.3–2.5% in patients who undergo surgery. Other complications include arthritis of the sub-talar and the calcaneo-cuboid joints, mal-position due to varus deformation of

☐ Introduction

the tuberosity, tendinitis or dislocation of the peroneal tendon caused by lateral impingement ,heel pain due to the crush injury to the soft tissue. , mal-union of fractures that cause pain and disability and are treated by osteotomies , heel exostosis at the plantar aspect of the heel and complex regional pain syndrome⁽⁸⁾.

Anatomy of the calcaneus bone

AIM OF THE WORK

The aim of the work is to review the problems that may follow calcaneal fractures which either treated conservatively or surgically and its sequence of complications, and to review different methods of treatment of these complications.