


ҲѻѬѻѿѻѿѻѿѻѿѻѿҩѿҩѿѻѿѻѿѻѿѻѿѻѿҩѿҩѿҩѿҩѿҩѿҩ

Acknowledgment

₹

₹

∰ 3

CA CA CA

果の果の果

З

₹•

3

₹(

S E

A CAC

Ħ

O THE O

K

୍ଦ ⊈•

3

Mo Mo Mo Mo Mo

I wish to express my Deepest gratitude to Professor Dr. Emtithal A. El. Sawi, prof. of organic chemistry, Faculty of women, Ain Shams Unversity, for her continous help, advise and encouragement. In spite of her overcrowded time, she offered me a great help and valuable discussion that attended every stage in this work.

>

8

>

æ > ₩

>

3

≥3

≱ ১

3

Ð

≱ ৃ

9

*≱*3

≱

) | 2

 Ξ

33

Ð

B

母の果

I am also deeply indebted to professor Dr. Mohamed Fahmi Seddik, prof. of food hygiene, Nutrition Institute, for his valuble suggestions and wise guidance that contributed to the success of the persent work. His extreme patience and untiring effort are more than I can express.

I would also like to experss my deep appreciation to Dr. Ahmed Mohamed

H. Shaker, Lecturer of Food Technology, Nutrition Institute, for suppervision

and support.

I gratefully appreciate the valuable help of Dr. Soheir El-Sarouni, Anatomy Department, Faculty of Medicine, Cairo University, for her unlimited help.

Finally, my deepest thanks to my family and my husband for their good received in many ways.

Tre hoŭoŭoŭoŭoŭoŭoŭoŭoŭoŭoŭoŭoŭoŭoŭo

Content

	page
I - Introduction .	······ 1
Aim of The work .	5
II - Review of Literature.	6
a - Biological effect of MSG.	····· 6
b - Biochemical effect of MSG.	11
c - Histological effect of MSG	23
d - Microboiolgical effect of MSG.	27
e - Other effects of MSG.	31
III - Materials and Methods : -	35
1 - Biological assay .	35
a - Materials.	35
b - Animals and Experimental design	35
c - Detremination of food intake.	35
d - Detremination of gain in weight.	35
e - Detremination of relative weight of organs	37
2 - Histological examination .	38
3 - Biochemical investigation: -	38
a - Brain function test.	
1 - Determination of Lactate Dehydrogenase (LDH)	20

	page
b - Kidney function test.	40
1 - Determination of serum urea.	40
2 - Determination of serum ceratinine.	41
c - Liver function test	43
1 - Determination of aminotransferases (GOT & GPT)	43
4 - Microboliogical investigation .	45
5 - Chemical of analysis of bouillons .	45
a - Determination of moisture.	
b - Determination of acid insoluble ash.	46
c - Determination of % sodium chloride .	46
d - Determination of % soluble solid material.	48
e - Determination of % MSG .	48
6 - Statistical analysis.	50
IV - Results and Discussion : -	52
A - Biological effects .	53
B - Biochemical effects. Enzyme activity.	69
C - Effect of MSG on histological structure of organs	94 ·
D - Microbiological examinations.	105
E - Chemical analysis of bouillons.	105
V - Conclusion and Recommendation.	107
VI - Summary .	108
VII - References .	111
VIII - Arabic Summary	. 136

List Of Tables

·	page
1 - Mean value of body weight gain of rats fed diets containing MSG.	55
2 - Mean value of food consumption of rats of fed diets containing MSG.	59
3 - Relative brain weight of rats fed on diets containing mono sodium	63
glutamate.	
4 - Relative liver weight, of rats fed on diets containing MSG.	65
5 - Relative kindneys weight of rats fed diets containing MSG.	67
6 - Mean values of lactate dehydrogenase (LDH) activities in serum.	71
7 - Mean values of lactate dehydrogenase (LDH) concentrated in brain.	73
8 - Mean serum urea values of rats fed diets containing MSG.	77
9 - Mean serum creatinine values of rats fed diets containing MSG.	80
10 - Mean serum glutamic oxaloacetic transaminase (GOT) values of	86
rats fed diets containing MSG.	
11 - Mean liver (GOT) values of rats fed diets cotaining MSG.	88
12 - Mean serum glutamic pyruvic transaminase (GPT) values of	90
rats fed diets containing MSG.	
13 - Mean 1 iver (GPT) values of rats fed diets containing MSG.	92
14 - Mean values of chemical analysis of bouillons.	106

List of Figures

	page
1 - Mean value of body weight gain of rats fed diets containing MSG.	56
2 - Mean value of food consumption of rats of fed diets containing MSG.	60
3 - Relative brain weight of rats fed on diets containing mono sodium	64
glutamate.	
4 - Relative liver weight of rats fed on diets containing MSG.	66
5 - Relative kindneys weight of rats fed diets containing MSG.	68
6 - Mean values of lactate dehydrogenase (LDH) activities in serum.	72
7 - Mean values of lactate dehydrogenase (LDH) concentrated in brain.	74
8 - Mean serum urea values of rats fed diets containing MSG.	78
9 - Mean serum creatinine values of rats fed diets containing MSG.	, 81
10 - Mean serum glutamic oxaloacetic transaminase (GOT) values of	87
rats fed diets containing MSG.	
11 - Mean liver (GOT) values of rats fed diets cotaining MSG.	89
12 - Mean serum glutamic pyruvic transaminase (GPT) values of	91
rats fed diets containing MSG.	
13 - Mean Liver (GPT) values of rats fed diets containing MSG	93

Legends OF Figures

	page
Fig .(14) A photomicrograph of the brain of a control rat group 1 showing	96
normal cellular morphology and pattern .(Hx & E .; x 200).	
Fig. (15) A photomicrograph of the brain of a rat of group II showing	96
vacuolation of the neurones with scattered pyknotic nuclci.	
A normal ganglionic cell (G) is also noticed (Hx. & e.; x300).	
Fig. (16) A photomicrograph of the brain of a rat of group III showing	97
ballooning of the nerve cells with marked vacuolation	
and unclear pyknosis . (Hx . & E .; x 300)	
Fig. (17) A photomicrograph of the brain of a rat of group IV showing	97
marked ballooning of the neurocytes, unclear pyknosis and	
indentation of the nuclear membranes, localised condensation	
of neurofibrils are noticed (thick arrows)(Hx . & E.; x300).	
Fig. (18) A photomicrograph of the brain of arat of group V showing giant	98
cell formation (thin arrows) .The surrounding stroma reveals marked	
condensation of the neruofibrils (thick arrows). (Hx. &E x 300)	
Fig. (19) A photomicrograph of the liver of a control rat of group I showing	g 100
normal cellular pattern and arrangement (Hx.&E. x 100).	
Fig. (20) A photomicrograph of the liver of a rat of group III showing a	100
normal lobular architecture. (p = a portal tributary cut obliquely).	
(Hx . & E .; x 150).	

·	page
Fig. (21) A photomicrograph of the liver of a rat of group IV showing	101
swelling of the hepatocytes and granularity of their cytoplasm.	
Narrowing of blood sinusoids is also noticed. (Hx. & E.; x 200).	
Fig. (22) A photomicrograph of the liver of a rat of group V showing	101
marked vacuolation of the hepatic cells. Focal dilatation of the	
blood sinusoids (s)containing scattered hypertrophied von	
kupffer cells (thin arrows) is seen (Hx. & E.; x 200).	
Fig .(23) A photomicrograph of the kidney of a control rat of group I	103
showing the normal structure of both the glomeruli and tubules.	
(Hx. & E .; x 200)	
Fig.(24) A photomicrograph of the kidney of a rat of group III showing	103
swelling of the tubular cells and granularity of their cytoplasm	
leading to stellate shaped narrowing of the tubular lumina	. •
(Hx.&E. x200)	
Fig.(25) A photomicrograph of the kidney of a rat of group IV showing	104
variable sized vacuolations with significant interstitial oedema	
(thick arrows) (Hx. & E.; x200).	
Fig.(26) A photomicrograph of the kidney of a rat of group V showing	104
focal areas of tubular necrosis (N), cloudy swelling (c) and	
vacuolation (v). (Hx.&E. x 200)	

Introduction

Introduction

(Food protection committee of the food and nutrition board) definied food additives as " a substance or mixture of substances, other than a basic foodstuff, which is present in a food as a result of any aspect of production, processing, storage, or packaging. The term does not include chance contamination.

"Additives can be divided into six major categories: preservatives, nutritional, additives, flavoring agents, texturizing agents, colouring agents and miscellaneous. Today, more than 2500 different additives are internationally added to foods to produce a desired effect.

Flavoring agent as a subsidiary branch of food additives comprise the greatest numbers of additives used in foods (700 substances). There are three major types of flavoring additives: sweeteners, natural and synthetic flavors and flavor enhancers.

Flavor enhancers magnify or modify the flavor of food and don't contribute any flavor on their own and it can be definied as: a substance that added to food to supplement or enhance its original taste or flavor. The term flavor potentiator has also been used with the same meaning. [Yoshihisa 1989 (Book)] ¹.

The best known and most widely used flavor enhancer is mono sodium L-glutamate (MSG). In 1866, a German chemist, Ritthausen, isolated glutamic acid. Later another chemist converted the acid to a sodium salt, mono sodium glutamate.

In doing their work, neither had any interest in flavor. More than 40 years later, in 1908, a Japanese chemist at the University of Tokyo, Dr. kikunae Ikeda,

discovered the flavor enhancing properties of MSG. Dr. Ikeda had set out to find out why and how a certain seaweed, "Laminaria Japonica, " affected flavor. Japanese cooks had used this seaweed for centuries to improve the flavor of soups and certain other foods. Dr. Ikeda discovered that the ingredients in the seaweed that made the difference was MSG, and that it had an unusual ability to enhance or intensify the flavor of many high protein foods.

Glutamate is ubiquitous in nature. It is present in many foods and in the human body, either as one of the amino acid building blocks of protein and peptides, or in its free form. The glutamate bound into a protein structure does not have the flavor - enhancing properties of the free form. only the "L isomer " has this flavor - enhancing activity.

Commercialization of glutamate began in 1909 with its isolation from wheat gluten. Today about 40.000 ton of MSG are manufactured annually in about 15 countries through out the world 2 .

The major use of MSG in cooking arround the world is as a flavor enhancer in soup and broths, sauces and gravies and flavoring and spice blends. MSG is also included in a wide variety of canned and frozen meats, poultry, vegetable and combination dishes.

Results of taste panel studies indicate that a level of 0.05 - 0.8 % by weight in food gives the best enhancement of the food's natural flavor. In home or restaurant cooking, this amount to about 1-2 tea spoonfuls per kilogram of meat or per 8-12 servings of vegetables, cosseroles, soup, etc.

The use of MSG in foods, like that of hundreds of other flavors, spices and food additives, is subject to a variety of standards and regulations on a world wide basis In 1987, the joint expert committee on food additive (JECFA), Food and Agricultural Organization of the United Nations and the World Health Organization (FAO / WHO) reviewed and endorsed the safety of glutamate, allocating an acceptable daily intake (ADI) for MSG as "not specified".

The previous numerical (ADI) has been removed, the implied exclusion of the use by humans under the age of 12 weeks has also been deleted. This is JECFA'S most favorable classification for food additives.

In the United States, MSG is included in the GRAS (Generally Recognized As Safe) list of food ingredients by the U.S. Food and Drug Administration, along with salt, pepper, sugar and vinger.

The scientific committee on food of the European commiunity evaluated MSG and gave number E 621 as a safe food additive.

In Japan MSG is a permitted food additive with no limitation. Studies on brain lesions in sensitive animal species, utilizing the injection or forced feeding of the huge dose of MSG in high concentrations, indicate that glutamate, like other food components, can induce toxic effects in test animals.

In studies done on mice using huge dose levels (500 mg/kg body weight) MSG was shown to produce brain lesion when the compound was injected or administered by forced intubation 3 .

It is important to note that large doses of MSG were required to induce brain damage. While World Health Organization authorities had recommended