Ain Shams University
Girls College
Biochemistry and Nutrition Department

"Interrelated effect of lentils (Whole and Split) and fat on lipid metabolism in rats"

574-192 F-K

Fares Khairy Ahmed Khalifa

Supervisors

Prof. Dr. Nazek M. Darwish

Professor of Nutrition
Girls College
Am Shams University

97

Dr. Nagwa I. Yehia
Ass. Professor of Nutrition
Girls College
Am Shams University

"Interrelated effect of lentils (Whole and Split) and fat on lipid metabolism in rats"

ву

Fares Khairy Ahmed Khalifa

Thesis

Submitted in partial fulfillment of the requirements for Master degree of science

In

Biochemistry and Nutrition Faculty of Girls Ain Shams University

1997

Contents

- Introduction
- Review of literature
- Aim of the work
- Materials and Methods 42
- Results
- Discussion
- Summary
- Abstract
- Conclusion
References

List of tables

Table 143
Table 247
Table 349
Table 455
Table 6
Table 6
Table 7
Table 864
<i>Table 966</i>
Table 10
Table 11
Table 12 77
Table 13

Acknowledgement

The author is greatly indebted to Prof. Dr. Nazek Mohammed Darwish, professor of Nutrition, and to Dr. Nagwa Ibrahim Yehia Hassanin, Assistant prof. of Nutrition, Department of Biochemistry and Nutrition, Girls College, Ain Shams University, not only for suggesting the point of research but also for their valuable advices and helpful guidance during the progress of this thesis.

Also the author wishes to acknowledge the assistance of *Prof. Dr. F.M. EL-Rayes and his co-Workers* at the scientific computation section, central laboratory for Design and Statistical Analysis, Agricultural Research Center, Cairo for providing the statistical analysis.

Introduction

The major lipids present in the plasma are fatty acids, triglycerides, cholesterol and phospholipids. Because they are not water-soluble, lipids are transin the plasma in association with proteins. ported Albumin is the principal carrier of free fatty acids (FFA) while the other lipids circulate in complexes known as lipoproteins. Lipoproteins are macromolecular complexes that, in addition to cholesterol and its esters, triglycerides, phospholipids and apoproteins. The non-polar lipids, mainly cholesteryl esters and triglycerides, are contained in the core of the particle while free cholesterol and phospholipids are on the surface. The apoproteins are located on the outer membrane and are bound to lipids via their lipophilic regions, thus stabilizing the particle. Apoproteins also serve several important metabolic functions as ligands for the binding of lipoproteins to receptors and as cofactors for enzymes involved in lipoprotein metabolism . Twelve major classes of apoproteins have so far been described, many of which exhibit polymorphism (Schaefer et al., 1978 ; Kostner, 1983; Mahley et al., 1984 Calvert and

Abbey, 1985; Kraemer, 1987 and Breslow, 1988). Lipoproteins show great variability in their size and composition (Lippel, et al., 1987).

At present the lipoproteins are classified into five major classes: chylomicrons, very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), low density lipoproteins (LDL) and high density lipoproteins (HDL). The chylomicrons are the largest particles found in plasma and are secreted by the intestine to transport the dietary triglycerides. Since the average daily intake of triglyceride is about 100 grams, large amounts of these triglyceride rich particles are synthesized after each meal but in normal persons are cleared efficiently (half life 4.5 min) so that after an overnight fast the serum is free of these particles (Nikkila, 1983).

However, recent studies based on labelling chylomicrons with dietary retinoic acid suggest that smaller species of these particles may persist in the serum for longer periods (Weintraub et al. , 1987).