## Association between Insulin Resistance and Gastro-esophageal Reflux Disease

### **Thesis**

Submitted for the partial fulfillment of Master degree in Internal Medicine

### By

#### Mohamed Mahmoud Mohamed Said M.B.B.Ch

### **Under Supervision of**

#### Prof. Dr./ Wafaa Kamal Eldin Mohamed

Professor of Internal Medicine, Gastroenterology & Hepatology Faculty of Medicine, Ain Shams University

### Prof. Dr./ Amal Shawky Bakir

Professor of Internal Medicine, Gastroenterology & Hepatology Faculty of Medicine, Ain Shams University

#### Doctor/Eslam Safwat Mohamed

Lecturer of Internal Medicine, Gastroenterology & Hepatology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2014

# بِسْمِ اللَّهِ الرّحمَنِ الرّحيمِ

(...رَبِّ أُوزِعنِي أَن أَشكُرَ نِعمَتَكَ النِّي أَن أَشكُر نِعمَتَكَ النِّي أَنْعَمْتَ عَلَيَّ و عَلى والدَيَّ و أَنْ أَعْمَلَ صَالِحاً تَرْضَاهُ و أَدْخِلْنِي بِرَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِينَ)
بِرَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِينَ)

### صدق الله العظيم

النمل. اية رقع 19



First, and foremost, my deepest gratitude and thanks should be offered to "ALLAHI", the most kind and most merciful, for giving me the strength to complete this work.

I would like to express my sincere gratitude to **Prof. Dr./ Wafaa Kamal Eldin Mohamed,** Professor of Internal Medicine, Gastroenterology & Hepatology, Faculty of Medicine, Ain Shams University, for her continuous support and guidance for me to present this work. It really has been an honor to work under her generous supervision.

I acknowledge with much gratitude to **Prof. Dr./**Amal Shawki Bakir, Professor of Internal Medicine,
Gastroenterology & Hepatology, Faculty of Medicine, Ain
Shams University, for her great supervision and unlimited
help to provide all facilities to accomplish this work.

I acknowledge with much gratitude to **Doctor**/ **Eslam Safivat Mohamed**, Lecturer of Internal Medicine, Gastroenterology & Hepatology, Faculty of Medicine, Ain Shams University, for his encouragement and help during this work

Last but not least, thanks to my Parents and my Family for helping me to finish this work.

Mohamed Mahmoud Mohamed Said

### **List of Contents**

| Subject                             | Page No. |
|-------------------------------------|----------|
| List of Tables                      | v        |
| List of Figures                     | vii      |
| List of abbreviations               | viii     |
| Introduction                        | 1        |
| Aim of the Work                     | 3        |
| Review of Literature                |          |
| Gastroesophageal Reflux Disease (GF | ERD)4    |
| Insulin Resistance (IR)             | 75       |
| Metabolic Syndrome                  | 108      |
| Patients and Methods                | 148      |
| Results                             | 156      |
| Discussion                          | 174      |
| Summary and Conclusion              | 182      |
| Recommendations                     | 183      |
| References                          | 184      |
| Arabic Summary                      |          |

### **List of Tables**

| Table No.          | Title                                       | Page No. |
|--------------------|---------------------------------------------|----------|
| <b>Table (1):</b>  | Protective mechanisms against GERD          | 6        |
| <b>Table (2):</b>  | Treatment of GERD                           | 51       |
| <b>Table (3):</b>  | AHA/NHLBI criteria for diagnosis            | of       |
|                    | metabolic syndrome                          | 112      |
| <b>Table (4):</b>  | Presents the diagnostic features of         | each     |
|                    | definition                                  | 113      |
| <b>Table (5):</b>  | Classification of overweight and obesity    | risk     |
|                    | for diabetes, cardiovascular disc           | ease,    |
|                    | hypertension.                               | 115      |
| <b>Table (6):</b>  | Metabolic syndrome: proposed compor         | nents    |
|                    | and associated findings                     | 117      |
| <b>Table (7):</b>  | Candidate genes associated with meta        | bolic    |
|                    | syndrome                                    | 121      |
| <b>Table (8):</b>  | Therapeutic goals and clim                  | nical    |
|                    | recommendations for management of           | the      |
|                    | metabolic syndrome                          | 127      |
| <b>Table (9):</b>  | Suggested Lifestyle Changes Counseling      | g on     |
|                    | Prediabetes and Metabolic Syndrome          | 129      |
| <b>Table (10):</b> | Weight loss treatment guidelines            | 131      |
| <b>Table (11):</b> | FDA-approved medications for we             | eight    |
|                    | management.                                 | 132      |
| <b>Table (12):</b> | Indications and contraindications           | for      |
|                    | bariatric surgery                           | 134      |
| <b>Table (13):</b> | Criteria for bariatric surgery in adolescen | its135   |
| <b>Table (14):</b> | Physical activity prescription for aerobic  | and      |
|                    | muscle strengthening exercises              | 136      |

## List of Tables (Cont....)

| Table No.          | Title                                         | Page No.       |
|--------------------|-----------------------------------------------|----------------|
| <b>Table (15):</b> | Criteria for performing stress testing        | and            |
|                    | examples of activity intensity                | 138            |
| <b>Table (16):</b> | Recommendations for using the F               | FITT           |
|                    | principle                                     | 139            |
| <b>Table (17):</b> | LDL-cholesterol goals and thresholds          | 141            |
| <b>Table (18):</b> | Core reflux disease questionnaire (cRDQ       | ) <b>:</b> 150 |
| <b>Table (19):</b> | Demographic, biochemical data of the st       | tudy           |
|                    | group                                         |                |
| <b>Table (20):</b> | Distribution of GERD symptoms accord          | _              |
|                    | to cRDQ:                                      |                |
| <b>Table (21):</b> | Comparison between patients with              |                |
|                    | without endoscopic findings (Ero              |                |
|                    | esophagitis) as regard RDQ score, HO          |                |
|                    | IR index, demographic and biochemical of      |                |
| <b>Table (22):</b> | Comparison between patients with and patients |                |
|                    | without endoscopic findings (Ero              |                |
| T 11 (22)          | esophagitis) as regard age, sex and smoking   |                |
| Table (23):        | Comparison between patients with              |                |
|                    | patients without endoscopic find              | _              |
|                    | (Erosive esophagitis) as regard o             |                |
| Table (24).        | symptoms (typical and atypical)               |                |
| 1 able (24):       | Comparison between patients with lower        |                |
|                    | patients with higher cRDQ scores as re-       | _              |
|                    | HOMA-IR, demographic and biochem              |                |
| Table (25).        | Comparison between patients with lower        |                |
| 1 able (25):       | Comparison between patients with lower        |                |
|                    | patients with higher cRDQ scores as re        | _              |
|                    | smoking and sex                               | 100            |

### List of Tables (Cont....)

| Table No.          | Title                                 | Page No. |
|--------------------|---------------------------------------|----------|
| <b>Table (26):</b> | Relationship between HOMA-IR index    | and      |
|                    | age, gender and smoking               | 169      |
| <b>Table (27):</b> | Correlation between HOMA-IR index     | and      |
|                    | other GERD symptoms                   | 170      |
| <b>Table (28):</b> | Correlation between HOMA-IR in        | ndex,    |
| cRl                | DQ score, biochemical data and endosc | copic    |
| fino               | dings                                 | 171      |

## **List of Figures**

| Figure (1): Parallel inhibitory and excitatory innervations of the esophageal smooth muscle                                                                                                                                                                                                                                                                                                    | Figure No.           | . Title                                         | Page No |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------|---------|
| Figure (2): Mechanisms of Reflux                                                                                                                                                                                                                                                                                                                                                               | Figure (1): I        | Parallel inhibitory and excitatory innervation  | is of   |
| Figure (3): EGD indicating Barrett's esophagus                                                                                                                                                                                                                                                                                                                                                 |                      | •                                               |         |
| Figure (4): EsophagealStrictures                                                                                                                                                                                                                                                                                                                                                               | Figure (2): N        | Mechanisms of Reflux                            | 13      |
| Figure (5): Barrett's esophagus                                                                                                                                                                                                                                                                                                                                                                | <b>Figure (3): H</b> | EGD indicating Barrett's esophagus              | 31      |
| Figure (6): Esophageal carcinoma                                                                                                                                                                                                                                                                                                                                                               | <b>Figure (4): H</b> | EsophagealStrictures                            | 40      |
| Figure (7): Insulin receptors                                                                                                                                                                                                                                                                                                                                                                  | <b>Figure (5): H</b> | Barrett's esophagus                             | 45      |
| Figure (8): Synthesis of insulin hormone                                                                                                                                                                                                                                                                                                                                                       | <b>Figure (6): H</b> | Esophageal carcinoma                            | 47      |
| Figure (9): Schematic of components of the MS                                                                                                                                                                                                                                                                                                                                                  | <b>Figure (7):</b> I | nsulin receptors                                | 66      |
| Figure (10): Pathophysiology of the metabolic syndrome                                                                                                                                                                                                                                                                                                                                         | <b>Figure (8):</b> S | Synthesis of insulin hormone                    | 67      |
| Figure (11): Growth in number of bariatric operations performed each year                                                                                                                                                                                                                                                                                                                      | <b>Figure (9):</b> S | Schematic of components of the MS               | 108     |
| Figure (12): Illustrations of operative procedures. The jejuno- ileal by-pass operation on the upper left is no longer performed due to its complications. The pancreatic-oduodenal procedure is technically difficult and is performed at a smaller number of centers. The lap-banding procedures, gastric bypass and vertically banded gastroplasty are the most widely performed operations | <b>Figure (10):</b>  | Pathophysiology of the metabolic syndrome       | e115    |
| Figure (12): Illustrations of operative procedures. The jejuno- ileal by-pass operation on the upper left is no longer performed due to its complications. The pancreatic-oduodenal procedure is technically difficult and is performed at a smaller number of centers. The lap-banding procedures, gastric bypass and vertically banded gastroplasty are the most widely performed operations | <b>Figure (11):</b>  | Growth in number of bariatric operat            | ions    |
| ileal by-pass operation on the upper left is no longer performed due to its complications. The pancreatic-oduodenal procedure is technically difficult and is performed at a smaller number of centers. The lap-banding procedures, gastric bypass and vertically banded gastroplasty are the most widely performed operations                                                                 |                      | performed each year                             | 133     |
| longer performed due to its complications. The pancreatic-oduodenal procedure is technically difficult and is performed at a smaller number of centers. The lap-banding procedures, gastric bypass and vertically banded gastroplasty are the most widely performed operations                                                                                                                 | <b>Figure (12):</b>  | Illustrations of operative procedures. The jejo | uno-    |
| pancreatic-oduodenal procedure is technically difficult and is performed at a smaller number of centers. The lap-banding procedures, gastric bypass and vertically banded gastroplasty are the most widely performed operations                                                                                                                                                                |                      | ileal by-pass operation on the upper left is    | s no    |
| difficult and is performed at a smaller number of centers. The lap-banding procedures, gastric bypass and vertically banded gastroplasty are the most widely performed operations                                                                                                                                                                                                              |                      | longer performed due to its complications.      | The     |
| centers. The lap-banding procedures, gastric bypass and vertically banded gastroplasty are the most widely performed operations                                                                                                                                                                                                                                                                |                      | pancreatic-oduodenal procedure is technic       | cally   |
| bypass and vertically banded gastroplasty are the most widely performed operations                                                                                                                                                                                                                                                                                                             |                      | difficult and is performed at a smaller number  | er of   |
| most widely performed operations                                                                                                                                                                                                                                                                                                                                                               |                      | centers. The lap-banding procedures, ga         | stric   |
| Figure (13): The vertical sleeve gastrectomy, also known as the sleeve gastrectomy or gastric sleeve procedure, is an obesity surgery in which a portion of the stomach is removed. This results in a new, smaller stomach that is roughly the                                                                                                                                                 |                      | bypass and vertically banded gastroplasty are   | e the   |
| the sleeve gastrectomy or gastric sleeve<br>procedure, is an obesity surgery in which a<br>portion of the stomach is removed. This results<br>in a new, smaller stomach that is roughly the                                                                                                                                                                                                    |                      | most widely performed operations                | 133     |
| procedure, is an obesity surgery in which a portion of the stomach is removed. This results in a new, smaller stomach that is roughly the                                                                                                                                                                                                                                                      | <b>Figure (13):</b>  | The vertical sleeve gastrectomy, also know      | n as    |
| portion of the stomach is removed. This results in a new, smaller stomach that is roughly the                                                                                                                                                                                                                                                                                                  |                      | the sleeve gastrectomy or gastric sle           | eeve    |
| in a new, smaller stomach that is roughly the                                                                                                                                                                                                                                                                                                                                                  |                      | procedure, is an obesity surgery in which       | ch a    |
| · ·                                                                                                                                                                                                                                                                                                                                                                                            |                      | portion of the stomach is removed. This res     | sults   |
| · ·                                                                                                                                                                                                                                                                                                                                                                                            |                      | •                                               |         |
| size and shape of a canada.                                                                                                                                                                                                                                                                                                                                                                    |                      | size and shape of a banana                      |         |

## List of Figures (Cont...)

| Figure No.          | . Title                                        | Page No |
|---------------------|------------------------------------------------|---------|
| <b>Figure (14):</b> | Tape measure is positionedhorizontally,para    | allel   |
|                     | to the floor.                                  | 151     |
| <b>Figure (15):</b> | Comparison between patients with endosce       | opic    |
|                     | findings (Erosive esophagitis) and pati        | ents    |
|                     | without as regard HOMA-IR index and cR         | 2DQ     |
|                     | score. Vertical axis represents the mean,      | the     |
|                     | vertical line at the top of the column repres  | ents    |
|                     | the standard deviation                         | 159     |
| <b>Figure (16):</b> | Comparison between patients with endosce       | opic    |
|                     | findings (Erosive esophagitis) and pati        | ents    |
|                     | without as regard BMI, waist circumfer         | ene,    |
|                     | SBP and DBP. Vertical axis represents          | the     |
|                     | mean, the vertical line at the top of the colu | umn     |
|                     | represents the standard deviation              | 160     |
| <b>Figure (17):</b> | Comparison between patients with endosce       | opic    |
|                     | findings (Erosive esophagitis) and pati        | ents    |
|                     | without as regard biochemical data. Ver        | tical   |
|                     | axis represents the mean, the vertical line at | the     |
|                     | top of the column represents the stand         | dard    |
|                     | deviation.                                     | 160     |
| <b>Figure (18):</b> | Comparison between patients with and with      | nout    |
|                     | endoscopic findings (Erosive esophagitis)      | ) as    |
|                     | regard age, sex and smoking. Vertical          | axis    |
|                     | represents the percent of subjects that hav    | e or    |
|                     | do not have EE of each division                | 162     |

## List of Figures (Cont...)

| Figure No           | . Title                                       | Page No |
|---------------------|-----------------------------------------------|---------|
| <b>Figure (19):</b> | Comparison between patients with and with     | thout   |
|                     | endoscopic findings (Erosive esophagitis      | s) as   |
|                     | regard other symptoms. Vertical               | axis    |
|                     | represents the percent of subjects that have  | ve or   |
|                     | do not have EE but the horizontal             | axis    |
|                     | represents presence (yes) or not (No) of      | each    |
|                     | symptom.                                      | 164     |
| <b>Figure (20):</b> | Comparison between patients with lower        | and     |
|                     | patients with higher cRDQ scores as re-       | egard   |
|                     | age, waist circumference and BMI. Ven         | rtical  |
|                     | axis represents the mean. The vertical lin    | ne at   |
|                     | the top of the column represents the stan     | ıdard   |
|                     | deviation.                                    | 166     |
| <b>Figure (21):</b> | Comparison between patients with lower        | and     |
|                     | patients with higher cRDQ scores as re-       | gard    |
|                     | HOMA-IR index. Vertical axis represents       | s the   |
|                     | mean, the vertical line at the top of the col | lumn    |
|                     | represents the standard deviation             | 166     |
| <b>Figure (22):</b> | Comparison between patients with lower        | and     |
|                     | patients with higher cRDQ scores as re-       | egard   |
|                     | biochemical data. Vertical axis represents    | s the   |
|                     | mean. The vertical line at the top of the col | lumn    |
|                     | represents the standard deviation             | 167     |
| <b>Figure (23):</b> | Comparison between patients with lower        | and     |
|                     | patients with higher cRDQ scores as regard    | d sex   |
|                     | and smoking. Vertical axis represents         | the     |
|                     | percent of subjects that have lower or hi     | igher   |
|                     | score of each division.                       | 168     |

## List of Figures (Cont...)

| Figure No.          | . Title                                              | Page No |
|---------------------|------------------------------------------------------|---------|
| <b>Figure (24):</b> | Relation between HOMA-IR index and                   |         |
|                     | gender and smoking. Vertical axis repre-             | sents   |
|                     | the mean, the vertical line at the top of            | f the   |
|                     | column represents the standard deviation             | 169     |
| <b>Figure (25):</b> | Positive correlation between HOMA-IR i               | ndex    |
|                     | and SBP (mmHg). The oblique line repre               | sents   |
|                     | the correlation, each dot means that a ce            | rtain   |
|                     | value of HOMA-IR index meets a certain v             | value   |
|                     | of SBP                                               | 171     |
| <b>Figure (26):</b> | Positive correlation between HOMA-IR i               | ndex    |
|                     | and DBP (mmHg). The oblique line repre               |         |
|                     | the correlation, each dot means that a ce            |         |
|                     | value of HOMA-IR index meets a certain v             | value   |
|                     | of DBP                                               | 172     |
| <b>Figure (27):</b> | Positive correlation between HOMA-IR i               | ndex    |
|                     | and BMI (Kg/m <sup>2</sup> ). The oblique line repre |         |
|                     | the correlation, each dot means that a ce            | ertain  |
|                     | value of HOMA-IR index meets a certain v             | value   |
|                     | of BMI                                               | 172     |
| <b>Figure (28):</b> | Positive correlation between HOMA-IR i               | ndex    |
| _                   | and WC (cm). The oblique line represent              | s the   |
|                     | correlation, each dot means that a certain v         | value   |
|                     | of HOMA-IR index meets a certain valu                | ie of   |
|                     | WC                                                   | 173     |
| <b>Figure (29):</b> | Positive correlation between HOMA-IR i               | ndex    |
|                     | and RDQ score. The oblique line represent            | s the   |
|                     | correlation, each dot means that a certain v         | value   |
|                     | of HOMA-IR index meets a certain valu                | ie of   |
|                     | cRDO score                                           | 173     |

#### **List of Abbreviations**

**ACE** : Angiotensin converting enzyme

**ACh** : Acetylcholine

AHA : American Heart Association
AMPK : AMP-activated protein kinase
ARBs : Angiotensin receptor blockers

**ATP** : Adenosine triphosphate

**baPWV** : Brachial-ankle pulse wave velocity

BMI : Body mass index BP : Blood pressure

**CGIT** : Combined glucose-insulin test

**CGMS** : Continuous glucose monitoring system

**CGRP** : Calcitonin gene-related peptide

**CHD** : Coronary heart disease

**COPD** : Chronic obstructive pulmonary disease **cRDQ** : Core Reflux Disease Questionnaire

**CRP** : C-reactive protein

**DBP** : Diastoli blood pressure

**DGER** : Duodenogastroesophageal reflux

DMN : Dorsal motor nucleusEE : Erosive esophagitis

**EGD** : Esophagogastroduodenoscopy

**ERD** : Erosive reflux disease

**ENOS** : Endothelial nitric oxide synthase

**ER** : Endoplasmic Reticulum

**FAs** : Fatty acids

**FBI** : Fasting blood suger **FBS** : Fasting blood insulin

**FDA** : Food and Drug Administration

**FSIVGTT**: Frequently sampled IV glucose tolerance tests

**GEJ** : Gastroesophageal junction

**GERD** : Gastroesophageal refux disease

**GLP-1** : Glucagon-like peptide-1

#### List of Abbreviations (Cont...)

**GPR120** : G-protein coupled receptor 120

**H.Pylori** : Helicobacter pylori

**H2RAs** : Histamine 2 receptor antagonists

HDL : High density lipoproteinHGD : High-grade dysplasia

HOMA : Homeostatic model assessment
 HPA : Hypothalamus pituitary axis
 IDF : International Diabetes Federation
 IHS : International Health Services

**IL-1** : Interleukin-1

IM : Intestinal MetaplasiaIR : Insulin resistance

**IRAS** : Insulin Resistance Atherosclerosis Study

IRS : Insulin receptor substrateISI : Insulin sensitivity indexIST : Insulin sensitivity test

LA : Los Angeles

LDL : Low density lipoproteinLES : Lower esophageal sphincter

**LGD** : Low-grade dysplasia

**MODY** : Maturity Onset diabetes of the Young

**MS** : Metabolic syndrome

**NAFLD** : Nonalcoholic fatty liver disease

**NCEPATP**: National Cholesterol Education Programme Adult Treatment Panel

**NERD** : Nonerosive disease

NO : Nitric oxide

NTS : Nucleus tractus solitariusOGTT : Oral glucose tolerance testOSA : Obstructive sleep apnea

PAI-1 : Plasminogen activator inhibitor-1
PCOS : Poly Cystic Ovarian Syndrome

**PPID**: Pituitary pars intermedia dysfunction

### List of Abbreviations (Cont...)

PPIs : Proton pump inhibitors PTH : Parathyroid hormone

**QOL** : Quality of life

SBP : Systolic blood pressureSCJ : Squamocolumnar junction

**SD** : Standard deviation

**SHBG** : Sex-hormone binding globulin

**SP** : Substance P

**SPSS** : Statistical Program for Social Science

T2DM : Type 2 diabetesTG : TriglyceridesTC : Total cholesterol

**TLESRs**: Transient lower esophageal sphincter relaxations

**TNF** : Tumor necrosis factor

**UA** : Uric acid

**UES** : Upper esophageal sphincter

**US** : United State

VIP : Vasoactive intestinal peptideWHO : World Health Organization

**11β-HSD1** : 11β-Hydroxysteroid Dehydrogenase Type 1

### Introduction

Gastroesophageal refux disease (GERD) is defined as an abnormal reflux of gastric contents into the esophagus at least once a week, leading to symptoms such as heartburn and/or acid regurgitation, and/or esophageal mucosal damage, which may also provoke long-term complications, such as Barrett's esophagus (*Lerardi et al.*,2010).

Metabolic syndrome, which includes interrelated risk factors for cardiovascular disease and diabetes, is a common disorder that threatens public health in many countries (*Alberti et al.*, 2009). Recent studies have identified that insulin resistance (IR), a principal component of metabolic syndrome, as well as related metabolic abnormalities, plays a role in carcinogenesis (*Chen et al.*, 2008).

In addition, the various metabolic syndrome components increase the risk of several non cardiovascular diseases, such as non-alcoholic fatty liver disease, polycystic ovary syndrome, obstructive sleep apnoea (*Eckel et al.*, 2005), and GERD (*Chung et al.*, 2008). GERD is known not only to affect the quality of patients' lives but may also increase the risk of oesophageal adenocarcinoma (*Lee et al.*, 2009).

Unfortunately, GERD is becoming increasingly prevalent in Asia, where it is currently estimated to affect more than 10% of the population (*Goh*, *2011*). Identification of risk factors for