Prevalence and Characterization of Pulmonary Vein Variants in Patients with Atrial Fibrillation Determined using Multislice Computed Tomography

Thesis

Submitted to the Department of Cardiology, Faculty of Medicine, Ain Shams University for partial fulfillment of M.D. Degree in Cardiology

By Khaled Abd El-Hakeem Ahmed Shahin

M.B.B.Ch, Al-Azhar University
M.Sc. Cardiology, Ain-Shams University

Under Supervision of Prof. Dr. Mervat Abou El-Maaty Nabib

Professor of Cardiology
Faculty of Medicine, Ain-Shams University

Prof. Dr. Sameh Email Sadek

Professor of Cardiology Military Medical Academy

Dr. Rania Samir Ahmed

Lecturer of Cardiology
Faculty of Medicine - Ain Shams University

Dr. Ayman Mortada Abd El-Moteleb

Lecturer of Cardiology
Faculty of Medicine, Ain-Shams University

Dr. Mohamed Abd El-Kader Abd El-Raheem

Lecturer of Cardiology Faculty of Medicine, Ain-Shams University

> Faculty of Medicine Ain-Shams University 2014

بسم الله الرحمن الرحيم

صدق الله العظيم سورة طه آية 114

ACKNOWLEDGEMENT

First and foremost, all thanks to ALLAH the most merciful and helpful.

I wish to express my deep sincere feelings towards Prof. Dr. Mervat Abou El-Maaty Nabih, Professor of Cardiology, Faculty of medicine-Ain Shams University for her close supervision, advice, encouragement and kindness. She kindly helped me to have this work in its complete form.

I am lucky to be supervised and directed by Prof. Dr. Sameh Emil, professor of cardiology, Military medical academy, for his moral support, guidance and encouragement in all steps of this work.

I am also, very grateful to Dr. Rania Samir, Lecturer of cardiology, Ain-Shams University, for her help, support and encouragement.

I would like to express my deepest gratitude to Dr. Ayman Mortada and Dr. Mohamed AbdElkader for their support, patience& encouragement through this study.

I also express my thanks & gratefulness to all my colleagues especially Dr. Omnia Azmy for her kind help throughout this work.

DEDICATION

To my kind father, loving mother

To my lovely wife/Reem

To my kids Nadia, Ahmed and Mohamed

To my brother /Ahmed

And to my sisters.

List of Contents

Item (Title)	Page No.
List of contents	III
List of tables	IV
List of figures	V-VI
List of charts	VII
List of abbreviations	VIII-IX
Introduction, Aim of work & References	X-XIV
Review of literature	
Chapter (1) Pulmonary Veins and Atrial	
Fibrillation	1 20
Chapter (2) Multislice (Multidetector)	21 48
Computed Tomography	
Subjects and methods	49 56
Results	57 73
Case Study and Examples	7479
Discussion	80 86
Summary	8788
Conclusion	89
Recommendation	90
References	91112
Arabic summary	ب د

List of Tables

No.	Name	Page
1	Demographic data of group 1	58
2	Demographic data of group 2	59
3	Comparison between both groups as regards the age distribution (Years)	60
4	Comparison between both groups as regards the gender differences (Male/Female)	62
5	Comparison between both groups as regards the left ventricular ejection fraction (%)	63
6	Comparison between both groups as regards the left atrium diameter (mm)	64
7	Comparison between both groups as regards the hypertension distribution (+/-)	66
8	Comparison between both groups as regards the coronary artery disease distribution (+/-)	67
9	Comparison between both groups as regards the congestive heart failure distribution (+/-)	68
10	Atrial fibrillation distribution among males and females of group 1 (Paroxysmal/Chronic)	69
11	Pulmonary vein anatomical variants in both groups	70
12	Pulmonary veins ostial dimensions in both groups	72

List of Figures

No.	Description (Title)	Page
1	Left atrium and myocardial sleeves of the distal PVs	4
2	Pulmonary vein phasic variation	24
3	3D volume rendered image for pulmonary veins	26
4	Accessory veins	28
5	Top vein	30
6	Atrial diverticula	31
7	Normal vestigial remnants	32
8	Azygous continuation of the IVC	33
9	Significant incidentals	35
10	Pulmonary vein stenosis and thrombosis	39
11	Treatment of pulmonary vein stenosis	41
12	In-stent restenosis	43
13	AEF: early findings	46

14	64 Multidetector-row CT	53
15	Measurement of pulmonary vein diameter	54
16	Typical example for variations of PV anatomy	55
17	Normal pulmonary venous anatomy	74
18	Normal ostial branches	75
19	Common (conjoined) veins	76
20	Common (conjoined) veins	76
21	Right Common vein	77
22	Accessory pulmonary vein	78
23	Normal pulmonary vein ostium	79

List of Charts

No.	Name	Page
1	Comparison between both groups as regards the age distribution (Years)	61
2	Comparison between both groups as regards the gender differences	62
3	Comparison between both groups as regards the left ventricular ejection fraction (%)	63
4	Comparison between both groups as regards the left atrial diameter (mm)	65
5	Comparison between both groups as regards the hypertension (+ve/-ve)	66
6	Comparison between both groups as regards the coronary artery disease (+ve/-ve)	67
7	Comparison between both groups as regards the congestive heart failure (+ve/-ve)	68
8	Atrial fibrillation distribution among males and females of group 1 (AF+; n= 100) (Paroxysmal/Persistant-Permenant)	69
9	Pulmonary veins anatomical variants in both groups	71
10	Pulmonary veins mean ostial dimensions (mm) in both groups	73

List of Abbreviations

Abbreviation	Meaning
AF	Atrial Fibrillation
APs	Action Potentials
ArPVs	Arrhythmogenic Pulmonary Veins
AV	Atrioventricular
CAF	Chronic Atrial Fibrillation
CHF	Congestive Heart Failure
CT	Computed Tomography
DADs	Delayed After Depolarizations
EAD	Early After Depolarization
ECG	Electrocardiogram
ERP	Effective Refractory Period
LA	Left Atrium
LAA	Left Atrial Appendage
LA-PV	Left Atrial–Pulmonary Vein
LIPV	Left Inferior Pulmonary Vein
LIPV	Left Inferior Pulmonary Vein
LNG	Lingual
LSPV	Left Superior Pulmonary Vein
LVEF	Left Ventricular Ejection Fraction
MDCT	Multidetector Row CT

NE	Norepinephrine
PAF	Paroxysmal Atrial Fibrillation
PVs	Pulmonary Veins
RA	Right Atrial
RCTs	Randomized Clinical Trials
RFA	Radiofrequency Ablation
RFCA	Radiofrequency Catheter Ablation
RIPV	Right Inferior Pulmonary Vein
RLL	Right Lower Lobe
RML	Right Middle Lobe
RSPV	Right Superior Pulmonary Vein
RUL	Right Upper Lobe
SMC	Smooth Muscle Cell
SVC	Superior Vena Cava
TEE	Transesophageal echocardiography

PROTOCOL

Introduction

Recent advances in multislice computed tomography (CT) has enabled us to visualize the pulmonary veins (PVs) and left atrium (LA) non invasively by creating high-quality 3 – dimensional images. (**Ueda et al., 2005**)

Conventional PV anatomy was defined as the presence of single right and left superior and inferior PVs that drained into the LA without accessory veins. (Schwartzman et al., 2003)

A common PV trunk , defined as a PV with coalescence of superior and inferior PVs >1.5 cm proximal to the junction with the left atrium. (Micochova et al., 2005)

Supernumerary or accessory PVs were defined as extra veins with independent atriopulmonary venous junctions separate from the superior and inferior PVs. (Lacomis et al., 2003)

A middle PV was defined as a distinct vein branching from the left atrial body and was clearly separated from the superior and inferior PV ostia. (Lacomis et al., 2003)

A right top PV was defined as an anomalous insertion of a branch of the right superior PV into the left atrial body. (Lickfett et al., 2004)

The PV ostium was the atriopulmonary venous junction. in epicardial views, it was identified as the point of the reflection of the parietal pericardium from the left atrium. (Ueda et al., 2005)

Kaseno et al., 2008 performed a study in the USA, where multislice CT was performed in 428 patients who had atrial fibrillation, size and branching pattern of PVs were analyzed.

A Typical pattern of 4 PVs with 4 separate ostia was found in 326 patients (76%).

A common PV trunk, was found on →

- a) Left side in 34 patients (8%)
- b) Right side in 3 patients (0.7%)

A discrete middle PV was found on \rightarrow

- a) Right side in 54 patients (13%)
- b) Left side in 9 patients (2%)

A right top PV was also found in 16 patients (4%).

In conclusion, 24 % of studied patients with atrial fibrillation had PV anomalies and 3 % had coexistence of 2 PV variants, indicating that PV variants are not rare. (Am J cardiol 2008; 101: 1638-1642).

Aim of the work

To analyze the anatomical pattern of pulmonary veins in patients who have atrial fibrillation.

Patients and methods

This is a cross sectional study which will include 200 subjects, 100 consecutive patients who have Atrial fibrillation and another 100 normal control subjects retrospectively chosen among patients who already underwent multislice CT for coronary angiography.

Inclusion criteria:

- Patients aging between 20& 65 years old.
- Patients with paroxysmal, persistent or permanent AF.
- Patients with either normal heart or structural heart disease.

Exclusion criteria:

- Patients who have renal impairment that contraindicates injection of contrast material.
- Patients with heart rate above 70 beats per minute in the control group during the scan.
- Patients who are not able to hold their breath during the scan.

All patients will be subjected to \rightarrow

- 1) History taking especially symptoms of AF, AF duration and medications that patient receives.
- 2) Brief clinical examination
- 3) 12 lead ECG (resting & during AF)
- 4) Echocardiography (especially left atrial size)
- 5) All patients will be screened for renal functions:

- No patients with serum creatinine >1.5mg% will be included in the study.
- Patients with creatinine between 0.1-1.5 will be admitted for hydration and acetyl cysteine therapy before the procedures.
- 6) Multislice computed tomography of pulmonary veins.

After informed written consent is obtained, images will be acquired using a multislice computed tomographic scanner during an intravenous injection of contrast dye (75ml at 5ml/s) in 64 parallel slices (1.25mm collimation), in 0.5 mm thickness.

The branching pattern of PVs and size of PVs and left atrium will be analyzed (number of veins, range prevalence of variants %).

In all patients, quantitative measurement of PVs and their variants and the left atrium will be performed using electronic 3-dimensional digital calipers.

Osteal diameters of PVs and their variants will be measured in 3 – dimensional reconstructed epicardial or endoscopic images.

Statistical analysis:

The statistical analysis will be performed using the appropriate statistical method.