HISTOLOGICAL AND BIOLOGICAL STUDIES ON THE EFFECTS OF GAMMA RADIATION ON THE ANGOUMOIS GRAIN MOTH,

Sitotroga cerealella OLIV

12 N. 2

Вy

MAGDA SAYED ABD-ALLA IBRAHIM

A thesis submitted in partial fulfillment

οf

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Economic Entomology)

Plant Protection Department Faculty of Agriculture Ain Shams University

1995

APPROVAL SHEET

HISTOLOGICAL AND BIOLOGICAL STUDIES ON THE EFFECTS
OF GAMMA RADIATION ON THE ANGOUMOIS GRAIN MOTH,
Sitotroga cerealella OLIV.

Bv

MAGDA SAYED ABD-ALLA IBRAHIM

B. Sc. Agric. Sci. (Agricultural Production), Cairo Univ., 1977 M. Sc. Agric. Sci. (Economic Entomology), Cairo Univ., 1985

This thesis for Ph. D. degree has been approved by:

Prof. Dr. Hamid Roushdy El-Kady

. Man Rosal ...

Prof. of Radiation Biology and Ex-Chairman of the Atomic Energy Authority, Cairo.

Prof. Dr. Ahmed Ali Gomaa

Marin.

Prof. of Economic Entomology, Plant Protection Dept., Faculty of Agric., Ain Shams Univ.

Prof. Dr. Youssef Salem Salem

Y-S-Salem

Prof. of Economic Entomology, Plant Protection Dept., Faculty of Agric., Ain Shams Univ.

Date of Examination: 6/12/1994

HISTOLOGICAL AND BIOLOGICAL STUDIES ON THE EFFECTS OF GAMMA RADIATION ON THE ANGOUMOIS GRAIN MOTH, Sitotroga cerealella OLIV

Bv

MAGDA SAYED ABD-ALLA IBRAHIM

B. Sc. Agric. Sci. (Agricultural Production), Cairo Univ., 1977 M. Sc. Agric. Sci. (Economic Entomology), Cairo Univ., 1985

Under the Supervision of:

Late Prof. Dr. Esmat A. El-Kady Prof. of Economic Entomology, Plant Protection Dept., Faculty of Agric., Ain Shams Univ.

Prof. Dr. Youssef Salem Salem
Prof. of Economic Entomology, Plant Protection Dept.,
Faculty of Agric., Ain Shams Univ.

Prof. Dr. Mohammed Youssef Youssef Ahmed Prof. of Insect Control, Radiobiology Dept., Nuclear Research Center, Cairo, Egypt.

ABSTRACT

The present work deals with the biological and histological effects of irradiation parental adults of *Sitotroga cerealella* with substerilized doses on the resulting progenies.

When parental adult males (P_1) were irradiated at 150, 200, 300 or 400 Gy and crossed with unirradiated females, the average number of spermatophores per mated female, fecundity and longevity of males and females were not affected among all generations at all tested doses, except in case of F_{10} x N+ from P_{1} males treated at 200, 300 or 400 Gy, where the average number of spermatophores was more than the control, the fecundity was reduced and there was significant increase in female longevity. The F_{1} adults were more sterile than their irradiated P_{1} males. F_{2} adults gain some of their fertility and the recovery was continued also

CONTENTS

Pa	age
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. General Biology of the Angoumois Grain Moth Sitotroga cerealella Oliver	3
Lepidopterous Insects	6
2.3. Effects of Gamma Radiation on S. cerealella2.4. Inherited Sterility in Progeny of Irradiated Lepido-	9 -
pterous Insects by Substerilizing Doses	13
Gonads of Some Insects	23
3. MATERIAL AND METHODS	28
3.1. Rearing technique	
3.2. Radiation source	
3.3. Biological studies	
3.4. Histological studies	
3.5. Statistical analysis	33
4. RESULTS	34
4.1. Effect of Gamma Irradiation on Certain Biological	
Aspects of <i>S. cerealella</i>	
4.1.1. Fertility of irradiated S. cerealella adult	34
4.1.2. Inheritance of partial sterility in progeny of	
irradiated S. cerealella males	
4.1.2.1. Number of spermatophores	
4.1.2.2. Number of eggs per mated female (Fecundity)	
4.1.2.3. Egg hatchability	41
4.1.2.4. Adult longovity	43

Cont.:

Page
4.1.2.5. Percentage of pupation 45
4.1.2.6. Adult emergence
4.1.2.7. Sex ratio 48
4.1.3. Inheritance of partial sterility in progeny of
irradiated <i>S. cerealella</i> females 50
4.1.3.1. Number of spermatophores 50
4.1.3.2. Number of eggs per mated female (Fecundity) 52
4.1.3.3. Egg hatchability 52
4.1.3.4. Adult longevity 55
4.1.3.5. Percentage of pupation 57
4.1.3.6. Adult emergence 59
4.1.3.7. Sex ratio 59
4.2. Effect of Gamma Irradiation on the Structure of
Male Reproductive Organs of S. cerealella 62
4.2.1. Normal structure of the adult testis 62
4.2.2. Testes of irradiated adults 68
4.2.3. Testes of F_1 adult progeny from P_1 adult males
irradiated at 200 Gy 68
4.2.4. Testes of F_2 adult progeny from P_1 adult males
irradiated at 200 Gy 73
4.2.5. Testes of F ₁ adult progeny from P ₁ adult females
irradiated at 300 Gy 73
4.3. Effect of Gamma Irradiation on the Structure of
Female Reproductive Organs of S. cerealella 79
4.3.1. Structure of the ovariole
4.3.2. Ultrastructure of oocytes and follicular cells
in the ovariole of unirradiated adults 82
4.3.3. Ultrastructure of oocytes and follicular cells in
the ovariole of irradiated adults 87

Cont.:

	Pa	ge
4.3.4.	Ultrastructure of oocytes and follicular cells in the ovariole of F ₁ adult progeny from P ₁ adult females irradiated at 300 Gy	87
5. DIS	USSION	96
6. SUMI	ARY 1	12
7. REFI	RENCES 1	18
ARABIC	SUMMARY.	

LIST OF TABLES

	Page
1.	Effect of gamma irradiation on egg hatch of <i>S.</i> cerealella irradiated as male or female adults and paired with untreated mates
2.	Effect of irradiating parental adult males of S . cerealella at different substerilizing doses on mating frequency of parents (P_1) and their F_2 , F_2 , F_3 progenies
3.	Effect of irradiating parental adult males of <i>S. cerealella</i> at different substerilizing doses on the fecundity of parents (P_1) and their F_1 , F_2 , F_3 progeny 39
4.	Effect of irradiating parental adult males of <i>S. cerealella</i> at different substerilizing doses on the fertility of parents (P_1) and their F_1 , F_2 , F_3 progeny 42
5.	Effect of irradiating parental adult males of <i>S. cerealella</i> at different substerilizing doses on adult longevity of parents (P_1) and their F_1 , F_2 , F_3 progeny 44
6.	Percent pupation of the successive generations of S . $cerealella$ whose parental adult males (P_1) were irradiated at different substerilizing doses of gamma radiation. 46
7.	Percent adult emergence from the formed pupae of the successive generations of S . cerealella whose parental adult males (P_1) were irradiated at different substerilizing doses of gamma radiation
8.	Sex ratio of the successive generations of <i>S. cerealella</i> whose parental adult males (P ₁) were irradiated at different substerilizing doses of gamma radiation 49

9.	Effect of irradiating parental adult females of S . cereals at different substerilizing doses on mating frequency of parents (P_1) and their F_1 , F_2 progenies	
10.	Effect of irradiating parental adult females of S . cerealellis at different substerilizing doses on the fecundity of parents (P_1) and their F_1 , F_2 progenies	₹
11.	Effect of irradiating parental adult females of S . cerealella at different substerilizing doses on the fertility of parents (P_1) and their F_1 , F_2 progenies 54	
12.	Effect of irradiating parental adult females of S . cerealella at different substerilizing doses on adult longevity of parents (P_1) and their F_1 , F_2 progenies	56
13.	Percent pupation of the successive generations of <i>S. cerealella</i> whose parental adult females (P ₁) were irradiated at different substerilizing doses of gamma radiation	58
14.	Percent adult emergence from the formed pupae of the successive generations of S . cerealella whose parental adult females (P_1) were irradiated at different substerilizing doses of gamma radiation	60
15.	Sex ratio of the successive generations of S . cerealella whose parental adult females (P_1) were irradiated at different substerilizing doses of gamma radiation	61

LIST OF FIGURES

Pa	g	۵

1.	Diagramatic drawing of the reproductive system of <i>S. cerealella</i> male showing accessory glands (AG),duplex (D), lower vas deferens (LVD), simplex (S), seminal vesicle (SV), testis (T), and upper vas deferens (UVD) 63
2.	Testis of unirradiated 1-day-old adult male showing the sperms arranged in bundles (Sb)
3.	Cross section of flagellar region of eupyrene sperms in bundle taken from testis of unirradiated 1-day-old adult <i>S. cerealella</i> male. x 4000
4.	High magnification of the eupyrene sperm bundle in Fig. (3). x 6000
5.	Cross section of flagellar region of apyrene sperms in bundle taken from testis of unirradiated 1-day-old adult <i>S. cerealella</i> male. x 4000
6.	Cross section of flagellar region of eupyrene sperms in testis of 1-day-old adult <i>S.cerealella</i> male irradiated at 700 Gy. x 6000
7.	Cross section of flagellar region of apyrene sperms in testis of 1-day-old adult <i>S. cerelella</i> male irradiated at 700 Gy. x 6000
s.	Cross section of flagellar region of eupyrene sperms in testis of F ₁ adult progeny from P ₁ adult males irradiated at 200 Gy. x 8000

9.	Cross section of flagellar region of apyrene sperms in testis of F_1 adult progeny from P_1 adult males irradiated at 200 Gy. x 6000	72
10.	Cross section of flagellar region of eupyrene sperms bundle in testis of F_z adult progeny from P_1 adult males irradiated at 200 Gy. x 5000	74
11.	High magnification of a portion of eupyrene sperm bundle in Fig. (10). x 8000	75
12.	Cross section of flagellar region of apyrene sperms in testis of F_z adult progeny from P_1 adult males irradiated at 200 Gy. x 4000	76
13.	Cross section of flagellar region of eupyrene sperm bundle in testis of F ₁ adult progeny from P ₁ adult females irradiated at 300 Gy. x 5000	7 7
14.	Cross section of flagellar region of apyrene sperms in testis of F_1 adult progeny from P_1 adult females irradiated at 300 Gy. x 8000	78
15.	Diagramatic drawing of reproductive system of <i>S. cerealella</i> females showing ovarioles (OV), Bursa copulatrix (BC), Spermathecae (SP) and accessory glands (Ag)	80
16.	Longitudinal section of the ovariole of unirradiated 1-day-old adult <i>S. cerealella</i> female showing nurse cells (NC), occyte (OC) and follicular cell (FC)	

17.	An electron micrograph of a portion of an oocyte in the posterior portion of the ovariole of unirradiated 1-day-old adult <i>S. cerealella</i> female showing protein and lipid yolk spheres x 3000
18.	An electron micrograph of the microvilli between the oocyte and follicular cell interface in the posterior portion of the ovariole of unirradiated 1-day-old adult <i>S. cerealella</i> female. x 6000
19.	An electron micrograph of follicular cell in the posterior portion of the ovariole of unirradiated 1-day-old adult <i>S. cerealella</i> female. x 8000 85
20.	An electron micrograph of a portion of cytoplasm of a follicle cell in the ovariole of unirradiated 1-day-old adult <i>S. cerealella</i> female. x 5000 86
21.	An electron micrograph of a portion of an oocyte in the posterior portion of the ovariole of 1-day-old adult <i>S. cerealella</i> female irradiated at 500 Gy, showing protein and lipid yolk spheres. x 5000 88
22.	An electron micrograph of a follicular cell in the posterior portion of the ovariole of 1-day-old adult S. cerealella female irraadiated at 500 Gy.x 3000 89
23.	High magnification of a portion of the follicular cell in Fig. (22). x 6000

	1.	150
24.	An electron micrograph of a portion of an oocyte in the posterior portion of the ovariole of F_1 adult progeny from P_1 adult females irradiated at 300 Gy, showing protein and lipid yolk spheres. x 4000	92
25.	An electron micrograph of the microvilli between the oocyte and follicular cell interface in the ovariole of F ₁ adult progeny from P ₁ adult females irradiated at 300 Gy. x 4000	93
26.	An electron micrograph of the follicular cells in the posterior portion of the ovariole of F_1 adult progeny from P_1 adult females irradiated at 300 Gy. x 2000	94
27.	High magnification of a portion of Fig. (26)	95

INTRODUCTION

1. INTRODUCTION

The control of Lepidopterous insect pests by applying the sterile insect release technique has received much and some of these results appear attention. to be promising. However, with most species, the initial expectation for this method has not been fulfilled. 0ne problem with moths is the very high radiation doses, in the order of 300-1000 Gy, required to sterilize adult males. Insects that require 300 Gy or more to induce sterility, more likely to incur severe physiological and somatic damage than the more radiosensitive species. The high doses render irradiated males much less competitive than the unirradiated males, due primarily to the inability of irradiated males to transfer sperms successfully (North and Holt, 1968 a and 1971). Emphasis, therefore, has shifted to a variation of the technique variously called inherited sterility, partial sterility, or semi-sterility. Thus, in the Lepidoptera, the F₁ progeny of an irradiated male parent with substerilizing doses, has a greater degree of sterility than the treated parent. The inheritance of sterility by Lepidopterian progeny is usually attributed to the presence of chromosome translocations (North and Holt, 1968 a) through physiologicl (North, 1975) or morphological dysfunction of sperm in the F₁ (Ashrafi and Ropple, 1973).