EFFECT OF INTRAVENOUS STREPTOKINASE ON THE RELATION BETWEEN INITIAL ST-PREDICTED SIZE AND FINAL QRS ESTIMATED SIZE OF ACUTE MYOCARDIAL INFARCTS

Thesis Submitted for Partial Fulfillment of Master Degree of Cardiology

616.12 D.M.

Presented by:

Ihab Mackeen Nakhla

M.B., B.Ch. (1983) Ain Shams University

63113

Supervised by:

Dr. Ramez Raouf Guindy

Prof. of Cardiology Ain Shams University

Dr. Said Khaled

Assistant Prof. of Cardiology Ain Shams University

Dr. Assem Mohamed Fathy

Lecturer of Cardiology
Ain Shams University

Faculty of Medicine Ain Shams University 1994

CONTENTS

			<u>PAGE</u>
*	Acknowledgem	ent	I
*	List of Figures		H
*	List of Tables		IV
*	Abbreviations		\mathbf{v}
*	Introduction		VI
*	Part One		
	Chapter I:	Thrombolytic Therapy.	1
	Chapter II:	The Selvester QRS Scoring System	26
		for estimating myocardial infarct size.	
	Chapter III:	Use of Initial ST-Segment deviation	40
		for prediction of final ECG size of acu	te
		myocardial infarcts.	
	Chapter IV:	Methods of estimation of infarct size.	47
*	Part Two		
	Chapter V:	Patients and Methods.	62
	Chapter VI:	Results.	72
	Chapter VII:	Discussion.	109
	Chapter VIII:	Conclusion and Recommendation.	116
	Chapter IX:	Summary.	117
	Chapter X:	References.	119
	Chapter XI:	اللغص العربي Arabic Summary	158

ACKNOWLEDGMENT

First and foremost I feel always indebted to GOD, the most kind, the most Merciful, for his great Love and Care all through my life.

It is a great honor to acknowledge my deepest gratitude to my supervisors:

Professor Dr. Ramez Raouf Guindy, Professor of Cardiology;

Dr. Said Khaled, Assistant Prof. of Cardiology; and

Dr. Assem Mohamed Fathy, Lecturer of Cardiology,

Faculty of Medicine, Ain Shams University

for their kind and remarkable supervision, continuos encouragement, and great help, with their advises and care, this work has been conducted.

I am most grateful to my Parents for their understanding and encouragement.

My greatest gratitude to all **Persons** who helped me and cared to have this work out into light.

ERRATA

Page	Line	Wrong	Correct	
1	Fig. I-1	PROTHROMBIN	PLASMINOGEN	
		↓ Plasmin	↓ Plasmin	
41	20	Table II	Table III - 2	
63	24	Table V-I (Title)	Table V - 1	
		ST Segment Criteria from Admition ECG:		
		1. ST $\uparrow \ge 1$ mm in ≥ 1 lead		
		2. Max ST $\uparrow \ge \text{Max ST} \downarrow \text{ or Max ST} \downarrow \text{ in V1 - V3}$		
		3. ST \uparrow in V1 > V2		
64	5	story	stay	
76	10	Reperfusion	Incidence of	
76	13	Reperfusion (delete)	******	
112	7	Kerschat	Kersschat	
112	13	Posternak	Pasternak	
112	16	Wibber	Wilber	
113	11	r = 0.746	r=0.76 (Fig. 12.A, p. 88)	
113	13	(73%)	(3.3%)	
113	21		(add) Fig. 12.B, p. 89	
114	4		(add) Fig. 12.C, p. 89	
116	8	••••	(add) patients with no	

myocardial Salvage may be better to do PTCA.

ERRATA

Page	Line	Wrong	Correct
CONTENTS	15	Infarts	Infarcts
(II)	3	machanism	mechanism.
(II)	7	Paramter	Parameter.
(II)	19	Precent	Percent.
(II)	21	Salavge	Salvage.
(V)	14	compete	complete.
11	13	Form patients	From patients
26	15	Infraction	Infarction.
27	12	Infraction	Infarction.
49	23	Adb Elhameed	Abd Elhameed.
50	7	Adb Elhameed	Abd Elhameed.
63	18	transnurał	transmural
71	19	propertions	proportions.
72	7	Smookers	Smokers
73	5	rang	range
73	6	femal	female
73	7	femal	female
73	9	Smookers	Smokers.
73	11	hypertention	hypertension
73	17	admistion	admission.
75	24	dissapeared	disappeared.
76	2	Intervension	intervention
76	5,6,8	dissapearance	disappearance
77	18,19	M1	M.I.
77	20,24	M1	M.I.
77	25,27	M1	M.I.

LIST OF FIGURES Continue

PAG	<u>}E</u>
Chapter VI	
Figure VI - 11: Threshold for detection of myocardial salavge	87
Figure VI - 12: Regression line - control group total patients	88
Figure VI - 13: Regression line - streptokinase group total patients	88
Figure VI - 14: Case I Patient No. : 1 Group I (Control) Acute Extensive	
Anterior MI	103
Figure VI - 15: Case II Patient No.: I1 Group I (Control) Acute Inferior MI	104
Figure VI - 16: Case III Patient No.: 17 Group I (Control) Acute Inferior MI	105
Figure VI - 17: Case IV Patient No.: 28 Group II (SK) Acute Antero Septal MI	106
Figure VI - 18 : Case V Patient No. : 29 Group II (SK) Acute Antero Septal MI	107
Figure VI - 19: Case VI Patient No.: 41 Group II (SK) Acute Infero Lateral MI	108

LIST OF TABLES

Charton I	PAGE
Chapter I Table I-1: Management of bleeding complications	13
Chapter II	28
Table II-1: Selvester QRS scoring system	20
Chapter III	42
Table III-1: ST segment criteria from the admission ECG.	42
Table III-2: Correlation of ST deviation with AMI size.	42
Table III-3: Duration of chest pain versus absolute median	
difference between predicted and measured AMI si	26.42
Chapter IV	
Table IV - 1: Simplified QRS Scoring System	57
Chapter V	
Table V-1: ECG criteria of admission epicardial injury.	63
Table V-2: AMI located criteria.	64
Table V-3: Selvester QRS scoring system.	67
Chapter VI	
Table VI-1: Patient Data	73
Table VI-2: Frequency of risk factors in study patients	73
Table VI-3: Comparing the effect of early versus late interventio	
of Group II (SK) by SK in AMI size.	74
Table VI-4: Comparing the duration of chest pain releif in GI	
& GII.	75
Table VI-5: Frequency of reperfusion arrhythmia.	76
Table VI-6: The ECG infarct size and myocardial salvage.	78
Table VI-7: Distribution of patients according to charge in perc	ental
difference between the predicted and final AMI siz	e. 79
Table VI - 8: Individual data of Patients in Group I (Control)	91
Table VI - 9: Individual data of Patients in Group II (SK)	97

ABBREVIATIONS

AMI = Acute Myocardial infarction.

MI size = Myocardial infarct size.

% dif. = Percentile difference.

AF = Atrial Fibrilation.

PAC = Premature atrial contraction.

PVC = Premature ventricular contraction.

VT = Ventricular tachycardia.

VF = Ventricular Fibrilation.

Pt. = Patients.

ant. = Anterior.

Inf. = Inferior.

LBBB = Left Bundle Branch Block.

RBBB = Right Bundle Branch Block.

CHB = Compete Heart Block.

 \sum = Sum

 Δ = Deviation (Delta)

 $ST(\uparrow) = ST$ -segment elevation

 $ST(\downarrow) = ST$ -segment depression

no. = Number

Inferior leads = II, III, aVF

Non inferior leads = I, aVL, V_{I-6} (aVR excluded)

Fig. = Figure

ECG = Electrocardiography

PART ONE

REVIEW OF LITERATURE

INTRODUCTION

With the advent of thrombolytic therapy, there is now a major focus on limiting the size of acute myocardial infarcts (Shah et al, 1986).

Several clinical techniques (Mcpherson et al, 1985) including serum enzymes, and scintigraphic and magnetic resonance imaging (White et al, 1988) have been used to evaluate the functional and anatomic extent of single and multiple myocardial infarcts. Previous studies documented the correlation between the Selvester QRS scoring system applied to the standard 12-lead electrocardiogram and anatomically measured percent left ventricular infarction in patients with single anterior (Ideker et al, 1982), inferior (Roark et al, 1983) and posterolateral (Ward et al, 1984) locations.

Thrombolytic therapy has been shown to reduce final infarct size in patients with acute myocardial infarction (*The ISAM Study Group 1986; Simoons et al 1986; Kennedy et al 1983*). As so, the reduction in infarct size has resulted in improvement of both the left ventricular function and the prognosis of patients (GISSI, 1986; ISIS-2, 1988; Res et al 1986; Stak et al, 1983).

In the absence of reperfusion therapy, previous studies (Askenazi et al 1977; Yusuf et al 1979; Aldrich et al 1988) have established the relation between the acute myocardial infarct size predicted by initial ST segment changes and that established by final ORS score.

Aldrich et al (1988) has presented formulas describing this relation [the initial predicted and the final estimated] for both anterior and inferior acute infarct location.

In an independent study by Clemmensen et al (1988, 1991), the formula for anterior location was validated and that for inferior location modified to include consideration of the full spectrum of electrocardiographic (ECG) leads.

So, if the size of an acute myocardial infarction were limited by either spontaneous or therapeutic reperfusion, these relation should be invalidated. The aim of the present study is to test this hypothesis in control versus streptokinase-treated groups of patients by estimation quantitatively the amount jeopardized myocardium initially predicted by ST-segment changes and finally by Selvester QRS scoring system. Then, the effect of streptokinase on the myocardial salvage could be estimated quantitatively by simple, rapid, easy and cheap method.

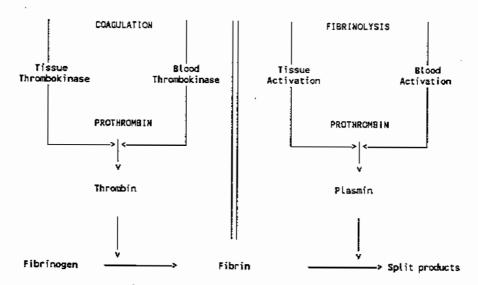
The concept that the size of a myocardial infarction can be modified by certain interventions in experimental animals after coronary occlusion has gained support from studies using the method of epicardial ST-segment mapping, correlated with analyses of creatine kinase (CK) activity and histological appearance of myocardial biopsies.

AIM OF THE WORK

This study has been done to quantify the effect of intravenous streptokinase on the relation between the initial ST-predicted size, and final QRS-estimated size of acute myocardial infarcts using the standard 12-lead surface electrocardiograph (ECG), and to identify the threshold for myocardial salvage.

PART ONE CHAPTER I

THROMBOLYTIC THERAPY


Blood clots which partially or completely obstruct major vessels must be removed in order to restore blood flow. Streptokinase achieve this by dissolving thrombus enzymatically, through activation of the patient's physiological potential for thrombolysis.

Thrombolysis is superior to the use of anticoagulants which only restrict the further deposition of fibrin, but have no direct action on an established thrombus. Thus, the role of anticoagulant therapy is secondary to that of thrombolysis.

Although a surgical approach to removing thrombus or emboli may be considered, the attendant hazards and inconvenience outweigh the possible benefits, which are rarely greater than those attained by thrombolysis. Extensive trials have proven thrombolytic treatment to be of great value.

THE HEMOSTATIC SYSTEM

In the hemostatic system, there is a dynamic equilibrium between coagulation (the formation of fibrin) and fibrinolysis (Fig.1). Coagulation is responsible for the integrity of the vascular system, whereas the fibrinolytic mechanism is concerned with maintaining vascular patency, by preventing excess fibrin accumulation.

(Fig. 1). * Coagulation and Fibrinolysis

THROMBOLYTIC AGENTS

Thrombolysis is mediated by <u>plasmin</u>, a non-specific serine protease generated by activation of the liver-synthesized circulating proenzyme plasminogen. Plasmin degrades fibrin (thrombolysis) as well as other peptides including fibrinogen; clotting factors V, VIII, and XII; and some hormones (Sherry et al, 1959).

Both <u>endogenous</u> (intrinsic and extrinsic) and <u>exogenous</u> activators of plasmin are recognized. The <u>intrinsic</u> activators [which include factor XII, kallikrein, and kinins] circulate in the plasma in precursor state, and the extrinsic plasminogen activators are of tissue or cellular origin (kidney, endothelial cells) and appear to be released and act locally. The <u>exogenous</u> activators are those used for the pharmacologic activations of plasminogen to plasmin. There are three groups of pharmacological activators of plasmin:

- (1) Streptokinase and its related agents;
- (2) Urokinase and its related agents; and
- (3) <u>Tissue plasminogen activator</u>.

I. STREPTOKINASE

Will be discussed later.

II. UROKINASE AND RELATED COMPOUNDS

Urokinase is produced by the human renal tubular cell and therefore is not antigenic to humans (Williams, 1951). It is a direct activator of the fibrinolytic system and requires no preliminary complexing phase with plasminogen. Its thrombolytic actions are similar to those of streptokinase, but urokinase appears to be slightly more clot specific than streptokinase. The disadvantage of urokinase is its very high price.

Single-chain urokinase, or prourokinase, is the zymogen precursor of urokinase. It is relatively clot-selective thrombolytic agent that release urokinase in the presence of fibrin (Gurewich et al, 1984). In experimental studies and in some clinical trials of patients with acute myocardial infarctions, single-chain urokinase has been an effective thrombolytic agent without pronounced systemic lytic effects (Collen et al, 1985; Van de Werf et al, 1986).