

GEOPHYSICAL STUDIES TO DELINEATE THE GEOLOGICAL AND HYDROGEOLOGICAL CONDITIONS IN THE AREA BETWEEN RAS ALAM EL RUM - RAS ABU LAHO - NORTH WESTERN COAST - EGYPT.

A Thesis
Submitted for the
Ph.D. Degree in Science (Geophysics)

To
Geophysics Department
Faculty of Science - Ain Shams University

By

91764

Galal Hassan Galal Hussein

(M.Sc. in Geology,1989)

Supervised by

Prof. Dr. Nasser M. Hassan

Prof. of Geophysics
Department of Geophysics
Faculty of Science
Ain Shams University

Dr. Mohamed A. Mabrouk Assist.Prof. of Geophysics A. Y. A. Department of Geophysics Desert Research Center(DRC) Prof. Dr. Sami S. Mohamed
Prof. of Geophysics
Department of Geophysics
Desert Research Center(DRC)

Dr. Salah E.A. Mousa Assist. Prof. of Geophysics Department of Geophysics Faculty of Science Ain Shams University

ACKNOWLEDGMENTS

Thanks always go to Allah, for providing me with the health and patience to complete this study.

The author would like to express his thanks to all those people who helped him during this work and their assistance is gratefully acknowledge, his deepest gratitude is extended to Prof. Dr. Nasser M. Hassan, Prof. of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University; Prof. Dr. Sami S. Mohamed, Prof. of Geophysics, Geophysics Department, Desert Research Center (D.R.C.), Dr. Mohamed A. Mabrouk, Geophysics Department, (D.R.C.) and Dr. Salah E. A. Mousa, Geophysics Department, Faculty of Science, Ain Shams University for suggesting the problem, supervising the work, offering valuable suggestions during all phases of the study and for critical reading and revising of the manuscript.

The author thanks all the staff members and his colleagues in D.R.C, headed by Prof. Dr. Mohamed Itman as well as his deep gratitude to all the staff members of Geophysics Department in Faculty of Science, Ain Shams University headed by Prof. Dr. Ahmed M. Sabry.

Finally, the author wishes to express his gratitude and appreciation to his wife and children for their patience as well as his parents.

CONTENTS

	Page
- LIST OF FIGURES	
- LIST OF TABLES	
- ABSTRACT	
- INTRODUCTION	1
- CHAPTER I : GEOLOGICAL AND GEOMORPHOLOGICAL	
FEATURES OF THE STUDY AREA	7
A. Geomorphology	7
1. Coastal plain	7
2. Peidmont plain	9
3. Table land	10
4. Drainage basins	10
B. Geology	11
1. Stratigraphy	11
a. Quaternary	11
i. Holocene	11
ii. Pleistocene	13
b. Tertiary	13
i. Pliocene	13
ii. Middle Miocene	14
2. Structure features	14

- CHAPTER II: CHARACTERISTICS AND STORAGE CAPACITY	
PROPERTIES OF THE STUDIED ROCK SAMPLES	18
A. General	18
B. Petrographical Studies	20
1. Lithologic description	20
2. Insoluble residue analysis	22
a. In Holocene samples	22
b. In Pleistocene samples	24
c. In Middle Miocene Samples	24
3. Storage capacity properties	25
a. Density of rock samples	25
b. Porosity of rock samples	28
i. Total porosity	31
ii. Effective porosity	32
c. The relationship between bulk density (ρ_b) and	
total porosity (\phi t)	33
d. Penneability	36
4. Electrical resistivity of rocks	40
a. Formation resistivity factor (F)	44
b. The relationship between the formation resist-	
ivity factor (F) and the porosity (ϕ) of the rock	
samples	48
c. The relationship between the resistivity index (I)	
and water saturation (Sw)	51
d. Effective directional porosity (ΦΕD)	53

e. Parameters of an anisotrpic medium	59
5. Net conclusion of the water collecting rock propertie	s. 64
- CHAPTER III : GEOELECTRICAL RESISTIVITY SOUNDING	
SURVEY	67
A. Field work	67
B. Interpretation of the field curves	69
1. Qualitative interpretation	69
2. Quantitative interpretation	72
3. The geologic and hydrogeologic situation	104
- CHAPTER IV : SEISMIC REFRACTION SURVEY	108
A. General	108
B. Siesmic data acquisition	109
C. Data processing and interpretation	111
D. Results and discussion	115
- CHAPTER V : GROUNDWATER EVALUATION	122
A. General	122
B. Aquifer characteristics	124
1. Holocene aquifer	124
2. Middle Miocene limestone aquifer	125
C. Groundwater Quality	126
1. Total salinity	126
2. Evaluation of groundwater for drinking and	

	Page
domestic purposes	128
3. Evaluation of groundwater for irregation uses	130
a. Wilcox 's classification	132
b. The U.S salinity laboratory staff (1954)	
classification	135
c. Irregation factor (a)	136
d. Residual Sodium Carbonate (RSC)	140
4. Use of groundwater for industerial purposes	140
SUMMARY AND CONCLUSIONS	143
- REFERENCES	156

.

LIST OF FIGURES

Fig.	No. Title	Page
1.	Location Map of the Study Area	2
2.	Regional Physiographic Map of Matruh - Umm El Rakham Area	
	(After El Senussi and Shata, 1969).	8
3.	General Geological Map of Mersa Matruh Area (After El Shazly	,
	1964)	12
4.	Morpho - Tectonic Features of Mersa Matruh Area (After	
	Eì Shazly, 1964)	15
5.	Morpho-Tectonic Map of Umm El Rakham Area (After El Senus	si
	and Shata, 1969)	16
6.	Location Map of the Selected Rock Sections in the Study Area	19
7.	Bulk Density Distribution Contour Map For Unit (D)	. 29
8.	Grain Density Distribution Contour Map for Unit (D)	. 30
9.	Total Porosity Distribution Contour Map For Unit (D)	34
10.	Effective Porosity Distribution Contour Map For Unit (D)	. 35
11.	Relationship between Total Porosity (\$\phi T\$) and Bulk Density (dB)	. 37
12.	Permeability Contour Map For Unit (D)	39
13.	Resistivity Contour Map Measured in East - West direction at	
	Rw = 0.43 Ohm.m For Unit (D)	45
14.	Resistivity Contour Map Measured in North-South direction at	
	Rw = 0.43 Ohm.m For Unit (D)	46
15.	Resistivity Contour Map Measured in Up - Down direction at	

Fig	. No. Title	Page
	Rw = 0.43 Ohm.m For Unit (D)	47
16.	The relationship between the effective porosity (ϕE) and the	
	formation resistivity factor in each direction of resistivity	
	measurement (FN) in north-south, (FE) in east-west and	
	(FU) in the vertical direction for Marmarica limestone	49
17.	The relationship between the effective porosity (ϕE) and the	
	formation resistivity factor in each direction of resistivity	
	measurement (FN) in north-south, (FE) in east-west and	
	(FU) in the vertical direction for unit D	50
18.	The relationship between the water saturation (Sw) and the	
	resistivity index (I)	52
19.	Effective Directional Porosity Contour Map Measured in North	
	- South Direction at Rw = 0.077 Ohm.m For Unit (D)	56
20.	Effective Directional Porosity Contour Map Measured in East	
	- West Direction at Rw = 0.077 Ohm.m For Unit (D)	57
21.	Effective Directional Porosity Contour Map Measured in Up	
	- Down Direction at Rw = 0.077 Ohm.m For Unit (D)	58
22.	Electrical Anisotropy Contour Map For Unit (D)	62
23.	Descriptive Ellipsoids for the Electrical Anisotropy	63
24.	Rock location map of the best estimated areas for water collecting	;
	properties	65
25.	Location Map for The Vertical Electrical Sounding	68
26.	Apparent resistivity curves	71
27.	Location Map for The Geoelectric Cross Sections	76
28.	Geoelectrical cross section I - I'	77

Fig	. No. Title	Page
29.	Geoelectrical cross section II - II'	78
30.	Geoelectrical cross section III - III'	80
31.	Geoelectrical cross section IV - IV'	81
32.	Geoelectrical cross section V - V'	83
33.	Geoelectrical cross section VI - VI'	84
34.	Geoelectrical cross section VII - VII'	86
35.	Geoelectrical cross section VIII - VIII'	87
36.	Geoelectrical cross section IX - IX'	88
37.	Isoresistivity contour map for unit (F)	89
38.	Isopach map for unit (F)	90
39.	Isoresistivity contour map for unit (E)	92
40.	Isopach map for unit (E)	93
41.	Isoresistivity contour map for unit (D)	94
42.	Isopach map for unit (D)	95
43.	Isoresistivity contour map for unit (C)	97
44.	Isopach map for unit (C)	98
45.	Isoresistivity contour map for unit (C)	99
46.	Isopach map for unit (C)	100
47.	Isoresistivity contour map for unit (A)	103
48.	Structure Contour Map for Top of Unit (D)	106
49.	Structure Contour Map for Top of Unit (B)	107
50.	Location Map for The Refraction Shallow Siesmic Cross Sections	112
5 1,	Normal (Regionalized) and detailed seismic layouts and an example	
•	of the recorded seismograms	113
52 .	Geosiesmic cross section I - I'	117

Fig.	No. Title	Page
53.	Geosiesmic cross section II - II'	117
54.	Geosiesmic cross section III - III'	120
55.	Geosiesmic cross section IV - IV'	120
56.	Location Map for The Collected Water Samples	123
57.	Classification of groundwater according to Wilcox method,	
	Wilcox (1948)	134
58.	U.S. Salinity diagram for classifying irrigation water	137

No.	Title	Page
13.	Mean, standard deviation and range values for the effective	
	directional porosity in the three directions of measuring at	
	the western basin	54
14.	Mean, standard deviation and range values for the effective	
	directional porosity in the three directions of measuring at	
	the eastern basin	55
15.	Mean, standard deviation and range values for the coeffi -	
c	ient of anisotropy	60
16.	The geoelectrical resistivities and thicknesses of the different	
	geoelectrical layers	% 74
17.	Water quality for the studied aquifers	128
18.	International standards for drinking water by the World	
	Health Organization, 1971 (Twort et al, 1974)	129
19.	Guide to the use of saline waters for livestock and poultry	
	(National Academy of Science, 1972)	131
20.	Guidelines for interpretation of water quality for irregation	
	(Ayers, 1975)	.33
21.	SAR classes for quality and usage 1	.35
22.	SAR values for the studied samples	36
23.	Irregation factor after Kamensky (1947)1	38
24.	The irregation factor (A) of the studied samples13	38
25.	Quality and condition of irregation water according to the	
	(a) factor (after Kamenesky, 1947) 1	39
26.	Residual Sodium Carbonate for the studied (RSC) samples14	10
27.	The quality requirements of water at points of use for some industries	12

ABSTRACT

This thesis represents an integrated study between geoelectrical, seismic, petrophysical and hydrogeological methods to delineate the geological and hydrogeological conditions in the area lying between Ras Alam El Rum and Ras Abu Laho in the northwestern coast of Egypt. The study area has the same geomorphological features along the Mediterranean Coast which are coastal plain, piedmont plain, table land and drainage basins.

The stratigraphic succession in the study area consists of Quaternary (Holocene and Pleistocene) and Tertiary (Pliocene and Middle Miocene). Holocene is represented by dune sand accumulation, wadi fillings, limestone crust and loamy deposits. Pleistocene rocks are oolitic limestone, cardium limestone and pink limestone. Pliocene rocks are creamy limestone, oolitic limestone and loamy deposits. Middle Miocene Marmarica formation consists of four claystone beds alternating with three limestone beds (Pecten, Gastropodal and Polyzoan limestone).

Structurally, Marmarica homocline is affected by monoclinal axis of NE-SW direction which protrude into the sea at Ras Alam El Rum, Ras Umm El Rakham and Ras Abu Laho. A gentle domal structure of E-W direction with low amplitude present at El Kharruba and El Raml which is related to bigger buried Pre-Tertiary structures.

Petrographical and petrophysical analysis were carried out to detect the water collecting potentialities. The insoluble residue analysis showed that

carbonate is the dominant component in all the analyzed rock samples. However, wadi fillings have higher sand ratio than the other rock samples. Onlitic limestone and pink limestone have the highest porosities as determined from bulk and grain densities, whereas the crystalline limestone and limestone crust attain the lowest porosity which was conformed by direct measuring of porosities on selected rock samples.

The total and effective porosities of unit D increase toward the central part of the area, between Wadi Magid and Wadi El Kharruba. An empirical equation relating the total porosity to the bulk density has been established for Marmarica limestone as a whole and for each of rock unit B and D. Permeability values indicate that the rock unit D is the most capable rock unit as an aquifer. The permeability distribution of rock unit D has its maximum reported values at Wadi Magid whereas its minimum reported values are at Wadi El Kharruba.

The electrical resistivity distribution of unit D at the three main directions of measurement revealed a zone of low resistivity in the central part of the area separating two higher resistivity zones toward the northwest and the southeast. Empirical equations were established relating the formation resistivity factor in the main three directions of measuring to the porosity for Marmarica formation and rock unit D. Another relation between the electrical resistivity index and the water saturation were established.

Effective directional porosity in the three directions of measurement increase toward the central part of the area and decrease in the southwestern and northeastern directions.