ENDOMETRIAL VOLUME AND ENDOMETRIAL FLOW INDICES IN PREDICTING THE SUCCESS OF IVF/ICSI CYCLES

Thesis

Submitted for partial fulfillment of the Master degree in Obstetrics &Gynecology

Mohamed Mahmoud Ahmed M.B., B.Ch, Faculty of Medicine Assiut University (2010) Resident of obstetrics and Gynecology At Masr Elgededa Military Hospital

Under Supervision of

Prof. Dr. Khaled Ibrahim Abdallah

Professor of Obstetrics and Gynecology, Faculty of Medicine - Ain Shams University

Prof. Dr. Ihab Foud Serag Eldin Allam

Professor of Obstetrics and Gynecology, Faculty of Medicine - Ain Shams University

Assist. Prof. Dr. Wessam Magdi Abuelghar

Assistant Professor of Obstetrics and Gynecology, Faculty of Medicine - Ain Shams University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 2016

Acknowledgment

First and foremost, I feel always indebted to Allah; the kind and merciful, that this research came to its end with Allah's well and help.

I would like to express my deepest gratitude and appreciation to prof. Dr. Khalid Ibrahim, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University for his continuous guidance and precious encouragement. I feel great honor to work under his supervision.

I am also greatly indebted to prof. Dr. Ihab Serag, Professor of Obstetrics & Gynecology, Faculty of Medicine, Ain Shams University, whose consistent supervision, kind advice and fruitful orientation and guidance has been of great help to me in completing this work and Assist. prof. Dr. Wessam M. Abuelghar, Assistant Professor of Obstetrics & Gynecology, Faculty of Medicine, Ain Shams University for his endless support, continuous guidance, advice and kind supervision during all stages of the work. I have learned much from him. Many thanks to Assist. prof. Dr. Abdelatif Elkholy, Assistant Professor of Obstetrics & Gynecology, Faculty of Medicine, Ain Shams University for his contributions in database collection and kind guidance.

Many thanks to **Dr. Monira Ali Ali**, Ultrasound Special Care Unit for the fetus, Ain Shams University and **Dr. Azza Awad Abdelrazik**, Embryology Lab. Director, Assisted Reproduction Unit, Ain Shams University for their great efforts and help to finish this work.

I am also very grateful to all staff members and all my colleagues in the department of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University.

Finally, I would also seize the opportunity to dedicate this thesis to my **family** for their Continuous help, encouragement, support, and belief in me.

Mohamed Mahmoud Ahmed

Contents

Subjects	Page
List of Abbreviations	4
• List of Tables	6
List of Figures	8
• Protocol	11
• Introduction	21
• Aim of the Work	25
• Review of literature:	
- Chapter 1: Implantation and IVF/ICSI St	uccess28
- Chapter 2: Doppler Ultrasound and Endo	ometrial
Receptivity:	44
- Chapter 3: Endometrial Volume And En	dometrial
Receptivity	56
Patients and Methods	63
• Results	72
• Discussion	100
• Summary	111
• Conclusion	116
• References	119
• Appendix	148
Arabic Summary	157

List of Abbreviations

AFC: Antral follicular count

ART : Assisted reproductive technology

CG : chorionic gonadotrophin

CT : Cytotrophoblast

ECM : extracellular matrix

ET : endometrial thickness

EV : endometrial volume

EVT : extravillous trophoblast

FI : Flow Index

FSH : Follicle stimulation hormone

Hcg : Human chorionic gonadotropin

HSG : Hystrosalpingography

ICSI : Intracytoplasmic sperm injection

IGFBP-1 insulin-like growth factor binding protein-1

IVF : In vitro fertilization

IVFET : In vitro fertilization- embryo transfer

PCOS : polycystic ovarian syndrome

PI Pulsatility index

PL : placental lactogen

PSV : Peak systolic velocity

RBC: Red blood cell

RI : Resistant Index

SD : Standard deviation

ST : Syncytiotrophoblast

TSH . Thyroid stimulating hormone

Saline infusion Sonohysterography

uNK : Uterine natural killer

US : Ultrasound

VEGF : Vascular endometrial growth factor

VFI : Vascularization flow index

VI : Vascularization Index

VOCAL : Virtual Organ Computer-aided Analysis

2-D : Two dimensional

3D US- : Three-dimensional ultrasound and power

PDA Doppler angiography

4D : Four dimensional

List of Tables

Table No.	Title	Page
Table (1)	Patients' characteristics of the studied sample	74
Table (2)	Type of infertility in the studied sample	75
Table (3)	Etiology of infertility of the studied sample	76
Table (4)	Three-dimensional ultrasound and power Doppler angiography parameters of the studied sample	77
Table (5)	Outcome measures of the studied sample	78
Table(6)	Outcome of current ICSI procedure in the studied sample	79
Table (7)	Comparison between non pregnant and pregnant cases as regards patients' characteristics	80
Table (8)	Comparison between non pregnant and pregnant cases as regards past history	81
Table (9)	Comparison between non pregnant and pregnant cases as regards duration, type, and etiology infertility	82
Table (10)	Comparison between non pregnant and pregnant cases as regards ultrasound and HSG work-up	83
Table (11)	Comparison between non pregnant and pregnant cases as regards laparoscopy and hysteroscopy work-up	84

Table (12)	Comparison between non pregnant and pregnant cases as regards hormonal profile	85
Table (13)	Comparison between non pregnant and pregnant cases as regards Current ICSI procedure	87
Table (14)	Comparison between non pregnant and pregnant cases as regards Three-dimensional ultrasound and power Doppler angiography parameters	88
Table (15)	Receiver-operating characteristic (ROC) curve analysis for prediction of pregnancy using the endometrial volume, VI, FI, or VFI	92
Table (16)	Comparison of the receiver-operating characteristic (ROC) curves for prediction of clinical pregnancy using the endometrial volume, VI, FI, or VFI	97
Table (17)	Summary of studies of endometrial blood flow by 3D transvaginal power Doppler ultrasound	109
Table (18)	Summary of data published about the role of Endometrial Volume in predicting outcome in IVF program	110

List of Figures

Fig. No.	Title	Page
Fig. (1)	(a) Trilaminar endometrium as seen at the end of the follicular phase. (b) luteal endometrium as seen at about the time that implantation would normally occur	35
Fig. (2)	Three-dimensional power Doppler angiography of the uterine blood supply.	37
Fig. (3)	Intra-subject variation in endometrial blood flow measurement	38
Fig. (4)	Schematic representation of the pulse echo system in the pregnant abdomen	51
Fig. (5)	The 'Histogram'	52
Fig. (6)	Determination of the subendometrial area volume by using the "shell" facility	54
Fig. (7)	The techniques of Endometrial volume calculation	58
Fig. (8)	Three-dimensional 'wire' models of the endometrium	59
Fig. (9)	Longitudinal ultrasound images demonstrate the endometrial pattern	60
Fig. (10)	Schematic characterization of endometrial vascular indices	68
Fig. (11)	Patient number (16, 24) 3D US-PDA showing Technique used for calculating Endometrial Volume and three	69

I		
	angiographic Power Doppler indices.	
Fig. (12)	Diagram showing flow of participants through the study	73
Fig. (13)	Showing type of infertility in the studied sample	75
Fig. (14)	Distribution of cohort according to etiology of infertility	76
Fig. (15)	Showing Outcome of current ICSI procedure in the studied sample	79
Fig. (16)	Endometrial volume in patients with positive or negative clinical pregnancy.	88
Fig. (17)	VI in patients with positive or negative clinical pregnancy.	89
Fig. (18)	FI in patients with positive or negative clinical pregnancy	90
Fig. (19)	VFI in patients with positive or negative clinical pregnancy	91
Fig. (20)	Receiver-operating characteristic (ROC) curve for prediction of clinical pregnancy using the endometrial volume	93
Fig. (21)	Receiver-operating characteristic (ROC) curve for prediction of clinical pregnancy using the VI.	94
Fig. (22)	Receiver-operating characteristic (ROC) curve for prediction of clinical pregnancy using the FI	95
Fig. (23)	Receiver-operating characteristic (ROC) curve for prediction of clinical pregnancy using the VFI	96

Comparison of the receiver-operating characteristic (ROC) curves for prediction of clinical pregnancy using the endometrial volume VI EL or VEL	98
the endometrial volume, VI, FI, or VFI.	

Protocol

ENDOMETRIAL VOLUME AND ENDOMETRIAL FLOW INDICES IN PREDICTING THE SUCCESS OF IVF/ICSI CYCLES

Protocol of Thesis

Submitted for partial fulfillment of the Master degree in Obstetrics & Gynecology

By

Mohamed Mahmoud Ahmed M.B., B.Ch, Faculty of Medicine Assiut University (2010) Resident of obstetrics and Gynecology At Masr Elgededa Military Hospital

Under Supervision of

Prof. Dr. Khalid Ibrahim Abdullah

Professor of Obstetrics and Gynecology, Faculty of Medicine - Ain Shams University

Prof. Dr. Ihab Foud Serag Eldin Allam

Professor of Obstetrics and Gynecology, Faculty of Medicine - Ain Shams University

Assist. Prof. Dr. Wessam Magdi Abuelghar

Assistant Professor of Obstetrics and Gynecology, Faculty of Medicine - Ain Shams University

> FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 2014

INTRODUCTION

Assisted reproductive techniques (ART) are used widely to treat fertility problems, which affect approximately 7–15% of women of reproductive age (Thoma et al., 2013). Although there have been several improvements in techniques during the last three decades (Martins et al., 2011; Phillips et al., 2013) clinical pregnancy and live-birth rates remain at approximately 30–40% and 20–30%, respectively (Sunkara et al., 2011; Gunby et., al 2011) according to results from the Canadian ART Register in 2007. Increasing these rates is desirable for couples undergoing ART, as treatment failure is a source of psychological distress (Pasch et al., 2012) and the most common cause of drop-out before achieving pregnancy (Verberg et al., 2008). The success of in vitro fertilization and embryo transfer (IVF-ET) cycles depends mainly on embryo quality and uterine receptivity (Barker MA et al., 2009). Endometrial receptivity is regulated by many factors including endometrial perfusion (Ng et al., 2006).

Several studies have demonstrated the existence of a correlation between endometrial characteristics and pregnancy rate in IVF/ICSI patients (Noyes et al., 1995; Richter et al., 2007; Al-Ghamdi et al., 2008).

Factors affecting the growth of endometrium are still not well understood, but recently many researchers have focused on the angiogenesis and vascularization within the endometrium and found that a poor uterine receptivity in women with thin endometrium may be due to the impairment of blood flow impedance through the endometrium (Sher and Fisch: 2000; Ng et al., 2007; Ho et al., 2009; Takasaki et al., 2010).

Some studies have suggested a minimal thickness for a successful pregnancy to occur, while others have reported adverse effects of increased endometrial thickness above which pregnancy is unlikely to occur (Zenke et al., 2004; Rashidi et al 2005; Schild et al., 2001). In contrast, others have failed to demonstrate a relationship between endometrial thickness, pattern, and pregnancy and implantation rates (Laasch et al., 2004; Garcia-Velasco et al., 2003; Dietterich et al., 2002; Yuval et al., 1999; Sundstrom et al 1998).

Biopsy of the endometrium cannot be considered during the treatment, and this has encouraged the development and use of ultrasonography and Doppler-like non-invasive methods to evaluate ovarian response to the stimulation and uterine receptivity (**Ebrard-Charra** *et al.*, **2005**).

The advantages of ultrasonography include its non-invasiveness, repeatability, real-time monitoring and predictability (Wang et al, 2010).

Furthermore, numerous other studies on uterine blood flow have led to conflicting conclusions (Yang et al., 1999; Schild et al., 2001; Basir et al., 2002a, b; Chien et al., 2004).

Merce. (2002) postulated that endometrial blood flow reflects properly the uterine receptivity because the endometrium is the site where embryonic implantation takes place. Similarly (Chien et al., 2002) reported the absence of Color Doppler mapping at the endometrial and sub endometrial levels is related to a significant decrease in the implantation rate, whereas the pregnancy rate increases when vessels can be depicted reaching the sub endometrial halo and the endometrium.

Raine-Fenning et al. (2004) found during the study of implantation window that after an increase in several ultrasonographic parameters three days before ovulation, decreases in the vascular index (VI) and the sub-endometrial vascular flow index (VFI), respectively. These observations suggest that there is specific vascular regulation during the cycle that correlates with endometrial development of a receptive state.

L'ed'ee et al. (2007) assume that the use of Three-dimensional ultrasound and power Doppler angiography (3D US-PDA) a non-invasive technology to assess blood flow, could provide information regarding the local angiogenic processes occurring in the endometrium which are essential for implantation and gestation.

Merce et al. (2008) results show a statistically significant increase in endometrial indexes of vascularization, flow, and vascularization flow indexes on the day of HCG administration in the pregnant group.

Ng et al. (2006) didn't prove the 3D Power Doppler indexes to be good predictors after (FSH) stimulation or on oocyte retrieval day. The difference between results in the studies may be due to the difference in the time of indexes measurement.