ENGINEERING FACTORS TO DEVELOP A SUSTAINABLE ENVIRONEMENTAL CONTROL SYSTEM FOR RABBIT PRODUCTION

By

SHAIMAA MOHAMED MOSTAFA BARAKA

B. Sc. Agric. Sc. (Agric. Engineering), Ain Shams University, 2008

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science (Biological-Agricultural Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

ENGINEERING FACTORS TO DEVELOP A SUSTAINABLE ENVIRONEMENTAL CONTROL SYSTEM FOR RABBIT PRODUCTION

By

SHAIMAA MOHAMED MOSTAFA BARAKA

B. Sc. Agric. Sc. (Agric. Engineering), Ain Shams University, 2008

This thesis for M. Sc. degree has been approved by:		
Dr. Mohamed Hashem Hatem		
Prof. of Agric. Engineering, Fac. of Agric.	., Cairo University.	
Dr. Ahmed Galal El-Sayed		
Prof. of Poultry Breeding, Fac. of Agric.,	Ain Shams University.	
Dr. Mohamed Abdel-Magid Genaidy		
Associate Prof. of Agric. Engineering, University	, , Fac. of Agric., Ain Shams	
Dr. Mohammed Nabil El Awady		
Prof. Emeritus of Agric. Engineering, University.	Fac. of Agric., Ain Shams	

Date of Examination: / / 2015

ENGINEERING FACTORS TO DEVELOP A SUSTAINABLE ENVIRONEMENTAL CONTROL SYSTEM FOR RABBIT PRODUCTION

By

SHAIMAA MOHAMED MOSTAFA BARAKA

B. Sc. Agric. Sc. (Agric. Engineering), Ain Shams University, 2008

Under the supervision of:

Dr. Mohammed Nabil El Awady

Prof. Emeritus of Agric. Engineering, Department of Agric Engineering, Fac. of Agric., Ain Shams University, (Principal Supervisor)

Dr. Mohamed Abdel-Magid Ibrahim Genaidy

Associate Prof. of Agric. Engineering, Department of Agric. Engineering, Fac. of Agric., Ain Shams University

Dr. Mahmoud Zaky El-Attar

Lecturer. of Agric. Engineering, Department of Agric. Engineering, Fac. of Agric., Ain Shams University

ABSTRACT

Shaimaa Mohamed Mostafa Baraka: Engineering Factors to Develop a Sustainable Environmental Control System for Rabbit Production, Unpublished M. Sc. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2015.

This research aims to study the effect of using Modified Trombe-Wall (MTW) in natural ventilation system to decrease thermal load in rabbit house. A Modified Trombe-Wall is a south-facing concrete blackened wall and covered on the exterior by glazing. Sunlight passes through the glass and is absorbed and stored by the wall. The glass and airspace keep the heat from irradiating to the outside. The experimental model was set up at Shoubra El-Kheima, Egypt. Results of the experimental work show that the (MTW) actually decreases temperature inside the model by seven-degrees Celsius. The technique achieved the largest ventilation rate (0.014 m³/s) at time 2 pm (September).

The results of theoretical Study for Trombe Wall system at rabbit house indicated that ventilation with TW decrease the heat stress by average thermal efficiency 20.7 %. The system of natural ventilation causing possible absence of stress conditions was detected (THI<27.8).

Keywords: Trombe Wall, Comfort zone, Ventilation, Animal environment

ACKNOWLEDGEMENT

My first and foremost thanks go to **ALLAH** for his blessings.

The work presented in this thesis could not have been completed without the help of several people that I wish, here, to acknowledge.

I would like to express my deep appreciation and gratitude to **Prof. Dr. Mohamed N. El Awady** for suggesting the topic of study, his kind supervision and fatherly encouragement throughout this work. I am grateful for his valuable discussions, suggestions and helpful criticism, which helped me to finalize this work.

My deep appreciation also goes to **Dr. Mohamed Abdel-Magid Genaidy** for his continuous encouragement, his confidence in me and his advice which was fundamental to the realization of this work. I am really thankful for his trust in me, his interest and for all the fruitful discussions throughout the different stages of the work.

I would like to express my recognition and give a special acknowledgement to **Dr. Mahmoud Z. El-Attar** who has been very generous of his time throughout the different stages of this work. I give a big thanking for him for his encouragement.

I am grateful to all staff members of Agricultural Engineering Department, Ain Shams University, for their valuable help and their encouragement. And special thanks to my work colleagues.

Finally, my sincere thanks and appreciation go to all those kind people: **my parents**, **my brothers** and **my son** for their encouragement and support.

CONTENTS

TITLE	Pag
LIST OF TABLES	IV
LIST OF FIGURES	V
LIST OF ABBREVIATIONS	V
I. INTRODUCTION.	1
II. REVIEW OF LITERATURES.	2
2-1 Climatic factors affecting livestock	2
2-2 Responses of animals to climatic changes and extreme	
climates	3
2-2-1 Heat balance	3
2-2-2 Limits of thermoregulation in heat and cold	4
2-2-3Thermoneutral zone and critical environmental	
temperatures	4
2-2-4 Morphological adaptations	5
2-2-5 Contribution of animal husbandry to climatic changes	5
2-3 Animal heat and moisture production	7
2-3-1 Emissions from livestock production	8
2-4 some factors affecting rabbit housing environment	9
2-4-1 Temperature	9
2-4-2 Relative humidity	g
2-4-3 Limits of ammonia	9
2-4-4 Ventilation rate	1
2-5 House orientation	1
2-6 Space requirements	1
2-7 Perspective on development of thermal indices for animal	
studies and management	1
2-7-1 Indices for humans	1

2-7-2 Indices for animals	12
2-7-3 Indices based on heat exchange	13
2-7-4 Indices-based response functions	14
2-8 Thermal comfort indexes	1.5
2-9 Heat Stress Effects	1′
2-9-1 Thermo-hygrometric Stress Index	1′
2-10 Ventilation systems in animal shelters	18
III. MATERIALS AND METHODS.	2
3-1 Description of the experiment model	2
3-1-1 Air vents	2
3-1-2 The Trombe Wall (TW)	2
3-1-3 The Modified Trombe Wall (MTW)	2
3-2 Instrumentations	2
3-2-a Thermocouples	2
3-2-b hot wire anemometer	2
3-3 Theoretical Study of Trombe Wall system for a shelter house.	2
3-3-1 House "A"	2
3-3-2 House "B"	3
3-4 The rate of heat transfer (H.T.)	3
3-5 Mass flow rate	3
3-6 Sensible energy balance for rabbits houses	3
3-6-1 Energy gains	3
3-6-1-1 Sensible heat gain from the rabbits	3
3-6-1-2 Solar heat gain	3
3-6-2 Energy losses	3
3-6-2-1 Heat loss through the building surfaces elements	3
3-6-2-2 Heat flow through building floor	3
3-6-2-3 Ventilation heat flows into and out of the structure	3
3-6-3 Heat storage	3
3-7 Trombe wall system thermal efficiency	3
3-7-1 thermal losses	3
3-8 Temperature Humidity Index (THI)	3

IV. RESULTS AND DISCUSSIONS.	41
4-1 Hourly variation of temperatures	41
4-2 Ventilation rate	45
4-3 sensible energy balances for model	45
4-4 sensible energy balances for house of rabbit	46
4-5 Trombe wall system thermal efficiency	47
4-6 Temperature Humidity Index (THI)	48
4-7 THI Stress index	48
V. SUMMARY AND CONCLUSION	51
VI. REFERENCES	53
VII- APPENDIX	62
ARABIC SUMMARY	

LIST OF TABLES

Table	Cultion4	
No.	Subject	page
1	Classification of climates according to their main effects	
	on animals	62
2	Impact of hot climate on animal productivity	62
3	Impact of cold climate on animal productivity	63
4	Impact of hot climate on animal reproductive	
	performance	63
5	Impact of climate on animal morbidity and mortality.	64
6	Heat loss mechanisms and factors affecting it	64
7	Physiological responses to heat and cold	65
8	Physiological responses to heat and cold	66
9	Environmental impact from livestock sourses	67
10	Ventilation standards in France for enclosed rabbits	67
11	Regression variable results of SHL	33
12	Heat gain, heat loss and heat stored at model without	
	TW and Ventilation with TW	46
13	Heat gain, heat loss and heat stored at rabbit house	
	without TW and ventilation with TW	47
14	Temperature-Humidity Index (THI) chart, associated	
	rabbit Weather Safety Index	49

LIST OF FIGURES

Figure No.	Subject
1	Zone of survival
2	Diagrammatic presentation of relationship between
	animal heat and moisture production and deep body
	temperature
3	General guideline for animal heat production
4	Responses of an animal to potential thermal stressors are
	complex, and lead to reduced performance, health and
	well-being
5	Temperature-Humidity Index (THI) associated livestock
	Weather Safety Index
6	The experimental model
7	The Model with air vents
8	A section view of TW
9	The Trombe Wall
10	The section of MTW
11	Photograph of the MTW
12	Measurement points
13	The digital thermometer and thermocouples
14	Hot wire anemometer and sensor
15	Outside view of house "A"
16	The section of Trombe Wall
17	Plan of house with Trombe Wall
18	Schematic diagram of the most important heat and
	substance flows for rabbits houses
19	Heat transfer through layers of bricks, gypsum board,
	Concrete, air, and absorber plate
20	The hourly average temperatures of ambient air and
	inside in the experimental model with ventilation vents.
21	The hourly average temperatures of ambient air and
	inside in the experimental model (TW)

22	The hourly average temperatures of ambient air and	
	inside in the experimental model (MTW)	42
23	The differences in average air temperatures between	
	ambient air and inside air the experimental model with	
	ventilation vents; TW and MTW	43
24	The hourly average temperatures of collector plate;	
	ambient air and air outlet air from (TW)	44
25	The hourly average temperatures of collector plate;	
	ambient air and air outlet air from (MTW)	44
26	The hourly variations of the experimental air ventilation	
	rate produced by the model with natural ventilation;	45
	(TW) and (MTW)	
27	Heat gain, heat useful and heat loss at the TW system	47
28	Overall thermal performance of the TW system	48
29	the ambient and internal values of THI for house (A)	
	without TW and house (B) with TW	50

LIST OF ABBREVIATIONS

Abbreviation	Definition	Page
_		No.
T_{i}	inside air temperatures	25
T_{o}	outside air temperatures	25
$T_{\rm r}$	Room temperature	25
T_s	The temperature on the surface of the south	
- 5	wall	25
T_g	temperature of the air gap	25
$\mathbf{V}_{\mathbf{i}}$	inside air velocity	25
V_{o}	outside air velocity	25
T_{m}	ambient air temperature	25
$V_{\rm m}$	ambient air velocity	25
Q	The rate of heat transfer	31
m	Mass flow rate	31
c_p	Specific heat of air	31
T_{in}	input air temperature to chimney	31
T_{out}	output air temperature from chimney	32
U	The overall heat transfer coefficient	32
\mathbf{A}_{s}	The surface area	32
q	The rate of heat transfer per unit area	32
ρ	density of air	32
V [·]	flow rate	32
A_{o}	the area of air outlet	32
$\mathbf{v}_{\mathbf{o}}$	exit air velocity	32
AR	Air exchange rate per hour	32
V	air volume in model	32
SHP	The rate of sensible heat production	33
T_a	Ambient air temperature of house	33
q_s	Sensible heat gain from the rabbits	33
W	Weight of rabbit	33

n	Number of rabbits	33
q_{f}	Heat flow through building floor	35
F	Perimeter heat loss factor	35
P	The building perimeter	35
η _{TW}	system efficiency	36
R_{o}	The thermal resistance of outer air	38
R_{g}	The thermal resistance of glass layer	38
R_{a}	The thermal resistance of air gap	38
R_{c}	The thermal resistance of concrete layer	38
R_s	the thermal resistance of gypsum board	39
R_b	the thermal resistance of bricks	39
R_{i}	the thermal resistance of inner air	39
$h_{\rm o}$	the air coefficient of outer surface	39
h_{i}	the air coefficient of inner surface	39
$\mathbf{k}_{\mathbf{g}}$	the thermal conductivity of glass layer	39
$\mathbf{k}_{\mathbf{a}}$	the thermal conductivity of air gap	39
k_c	the thermal conductivity of concrete layer	39
$\mathbf{k}_{\mathbf{s}}$	the thermal conductivity of gypsum board	39
k_b	the thermal conductivity of bricks	39
THI	The Temperature Humidity Index	40
t_{db}	dry bulb temperature	40
φ	Relative humidity	40

I. INTRODUCTION

Generally, climate control is of great importance for agricultural production in order to achieve high yield, good quality crops and develop production of animals. The quality of the environment in agricultural buildings is governed by such factors as temperature, moisture and air quality. The effects of temperature and humidity are often limiting the development production and reproduction of animals. Thermal stress acts as a limiting factor for maximum efficiency production and may interfere with reproductive rates and the production of meat and milk and increases rates of mortality. Effective temperature is particularly useful when the air temperature is below or above the thermal comfort zone. Ventilation is very important to provide fresh air necessary to maintain acceptable airquality levels, where air is driven in/out of the closed area because of pressure differences across the openings. Using passive ventilation by what is called a "Trombe Wall" uses solar energy because the energy is too expensive and may not be available. There are problems in providing a healthy environment and reproductive systems for small animals to give higher productivity, under controlled environmental conditions, using available natural resources and sustainable economy under Egyptian environmental conditions.

The aim of this research is to study engineering factors for a natural ventilation system, depending on roles warming to provide the appropriate conditions for rabbit housing.

II. REVIEW OF LITERATURE

The impacts of climate on animal production include the effect of extreme climates as well as the effect of global climatic changes.

In arid and semi-arid regions, high ambient temperature accompanied with scarcity of water affects significantly animal production to be about 2-4% of world meat, milk and egg production. In semi-arid regions, and that additional heat stress will damage crops and especially livestock (Lacetera, 2003). In humid tropical regions, Valtorta (2002) has discussed the direct and indirect impacts of climate on animal production.

According to climatic change scenarios, milk production in hot/hot-humid southern regions of United States might decline by 5-14%; conception rate will be reduced by 36% and short-term extreme events (e.g. summer heat wave and winter storms) can result in the death of vulnerable animals (IPCC, 2001).

2-1 Climatic factors affecting livestock

Climatic factors affecting livestock climatic regions can be classified according to its effect on animals to: hot, cold and altitude (Table 1-3).

Hahn et al. (2003) demonstrated that the main natural physical environmental factors affecting livestock are: air temperature, relative humidity, radiant heat, precipitation, atmospheric pressure, ultraviolet light, wind velocity and dust. Impacts of climatic factors on farm animal production, reproduction, morbidity and mortality are illustrated in Tables (2-4-5). It is worth noting that the effect climate on farm animals depends greatly on the severity and duration of climatic factor and animal adaptive mechanism. Chronic heat stress for example affects animal morbidity, production and reproduction, while it has a slight effect on animal mortality.