

MODELING AND CHARACTERIZATION OF MICRONIC MOS TRANSISTORS

By

WAEL FIKRY FAROUK FIKRY ABD-ALLA

B.Sc. in Electrical Engineering & M.Sc. in Engineering Physics

621.381528 W. F.

49961

A Thesis

Submitted in Partial Fulfillment for the Requirement of the Degree of

DOCTOR OF PHILOSOPHY

In

ENGINEERING PHYSICS

Department of Engineering Physics and Mathematics

Supervised By

Prof. Dr. O. A. Omar

Prof. Dr. H. F. Ragaie

Dr. H. Haddara

Cairo 1994

EXAMINER COMMITTEE

Name, Title and Affiliation

Signature

1. Prof. Dr. E. A. Talkhan

Prof. of Electronics and Communications, Electronics and Communication Eng. Dept. Faculty of Eng., Cairo University

2. Prof. Dr. M. N. Saleh

Dean and Prof. of Electronics and Communications, Faculty of Eng., Ain shams University

3. Prof. Dr. O. A. Omar

Prof. of Eng. Physics,

Physics and Mathematical Eng. Dept.,

Faculty of Eng., Ain Shams University

Date :18/5/1994

M.N. Saleh

O.A. Omar

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Doctor of Philosophy in Engineering Physics.

The work included in this thesis was carried out by the author in the Department of Physics and Mathematical Engineering, Ain Shams University, from November 1989 to May 1994.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date : /5/ 5/1994

Signature :

Name : Wael Fikry Farouk Fikry Abd-Alla

ACKNOWLEDGMENT

I am greatly thankful to Prof. O. A. Omar, Prof. of Eng. Physics, Physics and Mathematics Eng. Dept., Faculty of Eng., Ain Shams University, for his valuable guidance, encouragement and strong support.

I would like to express my sincere gratitude and appreciation to Prof. H. F. Ragaie, Prof. of Electronics, Electronics and Communication Eng. Dept., Faculty of Eng., Ain Shams University, for best supervision, useful discussions and critical reading of the manuscript.

I feel greatly indebted to Dr. H. Haddara., Associate Prof. of Electronics, Electronics and Communication Eng. Dept., Faculty of Eng., Ain Shams University, for his suggestion of the research point, valuable discussions, and for supplying me with all available facilities and devices.

Great thanks to Prof. R. R. Basily, Prof. of Solid State Electronics, Physics and Mathematics Eng. Dept., Faculty of Eng., Ain Shams University, for his cooperative efforts and advises.

The author thankfully acknowledge the help of personnel of the laboratory LPCS (Laboratoire de Physique des Composants a Semiconducteur, Grenoble, FRANCE) in which the low temperature measurements were carried out. Particular thanks are to Prof. S. Cristoloveanu (director of LPCS) for his support and

provision of deep submicron devices. I am also indebted to Prof. G. Ghibaudo for his cooperative, helpful discussions and instructive insights.

I would like to acknowledge the financial support for the three month stay in France provided by the DST (Departement Scientifique et Technologique), French embassy, Cairo.

My deep thanks to Prof. E. A. Talkhan, Electronics and Communication Eng. Dept., Faculty of Eng., Cairo University and Prof. M. N. Saleh, Dean, Faculty of Engineering, Ain Shams University for the accepting being members of the examiner committee.

Finally, thanks to technician R. Ibrahim for his great help and cooperation in I.C. Lab., Electronics and Communication Eng. Department, Faculty of Eng., Ain Shams University, where most of this work has been carried out.

ABSTRACT

The main objective of the present work is to thoroughly study short channel and deep submicron MOS transistors through developing new techniques for the characterization of mobility, series resistance and short channel effects at room and low temperatures. A new approach is presented for the simultaneous determination of the effective channel mobility and the parasitic series resistance taking into account both vertical and lateral fields. The proposed method is applicable for short channel devices as well as for long channel ones. The method is based on the measurement of the dynamic transconductance, the gate-channel capacitance and the ohmic region drain current, all on a single transistor. The effective mobility and the electric field dependence are investigated at different temperatures. A study of the drain and transfer characteristics of the new generation of submicron n-channel MOSFET down to $0.1\ \mu m$ is presented. The investigation is carried out using the two-dimensional numerical simulator "MINIMOS 4" to explain how the drain induced barrier lowering plays an important role in deep submicron device characteristics. Moreover, a novel method using the conductance transconductance in the saturation region is proposed to determine the drain induced barrier lowering coefficient. The effect of temperature on the above mentioned characteristics down to 50 K is discussed. Then, a new method which takes into consideration the effects of the lateral field and saturation velocity is proposed to extract the deep submicron MOSFET parameters such as the threshold voltage, the effective channel length, the effective mobility and the parasitic series resistance

LIST OF SYMBOLS

C_{bc}	Bulk-channel capacitance (F)
Cd	Depletion layer capacitance (F)
C_{gb}	Gate-bulk capacitance (F)
C_{gc}	Gate-channel capacitance (F)
Cinv	Inversion layer capacitance (F)
Cov	Overlap capacitance (F)
Cax	Gate oxide capacitance (F)
$C^{ m l}_{ m ax}$	Gate oxide capacitance per unit area (F/cm ²)
d	Spacing between contact window and point of current crowding (cm)
E_{c}	Critical electric field (V/cm)
$E_{eff}(E_y)$	Effective vertical (normal) electric field (V/cm)
E_x	Lateral electric field (V/cm)
g_d	Drain conductance (S or mho)
g_m	Transconductance (S or mho)
I_d	Drain current (A)
I_g	Gate current (A)
Is	Source current (A)
I Sub	Substrate current (A)
J_n	Current density of electrons (A/cm ²)
J_p	Current density of holes (A/cm ²)
t	Boltzman constant (J/K)
L	Mask channel length (μm)
Leff	Effective channel length (μm)

$L_{\scriptscriptstyle win}$	Contact window length (cm)
n	Density of free electrons (cm ⁻³)
n_i	Intrinsic density (cm ⁻³)
N_A	Acceptor impurity density (cm ⁻³)
N_D	Donor impurity density (cm ⁻³)
N_I	Ionized impurity density (cm ⁻³)
p	Density of holes (cm ⁻³)
\boldsymbol{q}	Magnitude of electronic charge (C)
$Q_{\scriptscriptstyle B}$	Depletion (bulk impurity) charge density (C/cm ²)
Q_f	Fixed oxide charge density (C/cm ²)
Q_{i}	Inversion charge (C)
$Q_{\scriptscriptstyle inv}$	Inversion charge density (C/cm ²)
Q_{it}	Interface state charge density (C/cm ²)
r_d	Drain resistance (Ω)
rs	Source resistance (Ω)
R_{∞}	Contact resistance (Ω)
R_{sh}	Sheet resistance (Ω)
R_{sp}	Spreading resistance (Ω)
R_T	Series resistance (Ω)
S	Subthreshold Swing (mV/Decade)
S_n	Sensitivity of preamplifier (V/A)
T	Absolute temperature (K)
T_{ox}	Gate oxide thickness (nm or A°)
\mathcal{V}_{sat}	Saturation velocity (cm/s)
V_b	Substrate voltage (V)
V_d	Drain voltage (V)

```
Drain saturation voltage (V)
     V_{dsat}
    V_{FB}
                     Flat band voltage (V)
    V_{\mathfrak{g}}
                     Gate voltage (V)
                    Threshold voltage (V)
    V_{t}
    W
                    Mask channel width (µm)
                    Effective channel width (µm)
    W_{eff}
                    Distance between channel and starting point of current crowding(µm)
    X_{ac}
                    Maximum depletion region width (cm)
    X_{dm}
   X_{ch}
                   Channel thickness (µm)
   X_i
                   Junction depth (µm)
   \Delta L
                   Lateral diffusion of the source and drain under the gate (\mu m)
   \partial L
                   Length of the pinchoff region (µm)
                   Silicon dioxide permittivity (F/cm)
  Eax
                  Silicon permittivity (F/cm)
  \mathcal{E}_{si}
                  Inversion charge weighting factor
  η
  θ
                  Mobility degradation factor (V-1)
  λ
                  Drain induced barrier lowering coefficient
                  Inversion layer (MOSFET) mobility (cm<sup>2</sup>/V-s)
 μ
                 Bulk mobility (cm<sup>2</sup>/V-s)
 \mu_{\scriptscriptstyle R}
                 Coulomb scattering mobility (cm<sup>2</sup>/V-s)
 \mu_c
                 Effective mobility (cm<sup>2</sup>/V-s)
 \mu_{\it eff}
                 Field-effect mobility (cm<sup>2</sup>/V-s)
\mu_{FE}
                Electron mobility (cm<sup>2</sup>/V-s)
\mu_n
                Electron ionized impurity scattering mobility (cm<sup>2</sup>/V-s)
\mu_{nl}
                Low field mobility (cm<sup>2</sup>/V-s)
\mu_o
                Hole mobility (cm<sup>2</sup>/V-s)
\mu_{p}
```

Hole ionized impurity scattering mobility (cm²/V-s) μ_{pl} Phonon scattering mobility (cm²/V-s) $\mu_{\scriptscriptstyle ph}$ Surface mobility (cm²/V-s) μ_{s} Saturation mobility (cm²/V-s) μ_{sat} Surface roughness scattering mobility (cm²/V-s) μ_{sr} Resistivity (Ω cm) ρ Contact resistivity (Ω cm²) ρ_{c} Sheet resistance per square (Ω/\Box) ρ_{s} ø Electrostatic potential (V) Surface potential at pinchoff (V) $\phi_{_{p}}$ Bulk fermi potential (V) ϕ_{f}

Abbreviations

 ψ_s

CLM Channel Length Modulation

DIBL Drain Induced Barrier Lowering

Surface potential (V)

HCE Hot Carrier Effect

MOSFET Metal Oxide Semiconductor Field Effect Transistor

ULSI Ultra Large Scale Integration

VLSI Very Large Scale Integration

CONTENTS

INTRODUCTION		iv
СНАР	TER 1: Review	1
1.1	INTRODUCTION	1
1.2	MOSFET MOBILITY	2
	1.2.1 EFFECTIVE MOBILITY	6
	1.2.2 FIELD-EFFECT MOBILITY	9
	1.2.3 SATURATION MOBILITY	10
1.3	EFFECT OF SOURCE AND DRAIN SERIES	
	RESISTANCES	11
1.4	MEASUREMENT METHODS FOR MOSFET	
	MOBILITY AND SERIES RESISTANCE	15
1.5	PHYSICAL MECHANISMS INVOLVED IN MOSFET	
	CARRIER SCATTERING	21
	1.5.1 Phonon Scattering	22
	1.5.2 Coulomb scattering	23
	1.5.3 Surface roughness scattering	25
	1.5.4 Ionized Impurity Scattering	25
1.6	SHORT CHANNEL EFFECTS	29
	1.6.1 Channel Length Modulation	30
	1.6.2 Drain Induced Barrier Lowering and Punchthrough	31

	1.6.3 Hot-Carrier Effects	33
	1.6.4 Saturation velocity	36
	1.6.5 Geometry Effect on Threshold Voltage	38
1.7	TWO DIMENSIONAL NUMERICAL SIMULATION	41
CHAP'	TER 2: Mobility and Series Resistance	
	Characterization	43
2.1	INTRODUCTION	43
2.2	MEASUREMENT SYSTEMS	46
	2.2.1 I-V Setup	46
	2.2.2 Admittance measurement setup	47
2.3	MEASUREMENT METHOD	49
	2.3.1 Theory	49
	2.3.2 Extraction of effective mobility and series resistance	53
	2.3.3 Determination of the threshold voltage	54
	2.3.4 Determination of the effective channel length	55
2.4	EXPERIMENTAL RESULTS AND DISCUSSION	57
2.5	ELECTRIC FIELD MOBILITY DEPENDENCE	71
CHAPT	ER 3 : Characterization of Deep Submicron	
	MOS Transistors	77
3.1	INTRODUCTION	77

3.2	DRAIN CHARACTERISTICS	79
	3.2.1 Room Temperature Characteristics	7 9
	3.2.2 Low Temperature Characteristics	84
3.3	TRANSFER CHARACTERISTICS	87
	3.3.1 Room temperature characteristics	87
	3.2.2 Low Temperature characteristics	91
3.4	DIBL ANALYSIS IN DEEP SUBMICRON MOSFETs	
	USING 2-D NUMERICAL SIMULATION	94
3.5	A NEW METHOD FOR THE DETERMINATION OF	
	THE DIBL COEFFICIENT	101
	3.5.1 Theory	102
	3.5.2 Experimental Results and Discussion	103
3.6	NEW METHOD TO EXTRACT DEEP	
	SUBMICRON MOSFET PARAMETERS	105
	3.6.1 Theory	106
	3.6.2 Experimental Results and Discussion	109
CONCL	USION	115
APPENDICES		118
A.	MINIMOS 4 - A Two Dimensional Numerical Simulator	
of Pl	aner MOSFETs	118
B.	Measurement and Parameter Extraction Programs	121
C.	Derivation of Equation (2.22)	140
REFERI	ENCES	142

INTRODUCTION