T T

e,)
T -
; oy

Slas
UNIFICATION OF FUNCTIONAL AND
LOGICAL PROGRAMMING

SUBMITTED IN PARTIAL FULFILLMENT.

OF THE {M. Se¢.) DEGREE

s e
Bsy - -»f-»w,-._:;..g
: AZZA ABDEL RAHMAN TAHA "
515 7
.(év\ r f _ / f q d
SUPERVISED BY
PROF. DR. BAYOUMI IBRAHIM BAYOUMI DR. SAMEH SAMI DAOUD

SUBMITFED TO
MATHEMATICS DEPARTMENT
FACULTY OF SCIENCE P
o AIN SHAMS UNIVERSITY

\:,I_'Q
)

(CAIRO)
1994

ABSTRACT

The aim of this thesis is to built an interpreter which
evaluates the set of all solutions of an equational programs
using paramodulation and reflection inference rules. It’s
input is an egunational program and an equaticnal geal and it
returns whether this goal is a logical consequence of the
program or not. It returns also a computed answer
substituticn if it exists.

m
/‘- -
.
ST

::L% 1 :éf %
-— = [i
,f:EE = 5::_'::

L ‘\ |

Central Library - Ain Shams University

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Dr,
Sameh Sami Daoud, Associate prof., Mathematics Department,
Faculty of science, Ain Shams University, for his valuable
guidance, supervision, sincere advice and help during the
preparation of the thesis.

I would like to express my gratitude and thanks to
Pref. Dr. Bayoumi Ibrahim Bayoumi, Mathematics Department,
Faculty of science, ain Shams University, for his wvaluable

advice and offering every possible help,.

I am also grateful to Dr. Mahmoud Khairat, Associate
prof., Mathematics Department, Faculty of science, Ain Shams
University, for his cont intous help, and

encouragement.,

Summary

Chapter 1
1.1
1.2
1.3
1.4
1.5
1.6

Chapter 2

Chapter

W o b

e

Chapter

Chapter 5

5.1

References

CONTENTS

Intreduction

Foundation of Logic Programming

Foundation of Equational Logic programming
Unification

Interpretations and models

Fixpoint Characterigation

SLD Resclution

Universal Unification

Paramodulation

Fixpoint Characterization
Paramodulation

Directed Paramodulaticn

Universal Unification by Complete Sets
cf Transactions
The Transformation rules
Scundness of the Transformation rules
Completeness of the Transformation rules
Combining Logic Programming and Eguational
Solving

Implementation cof Paramodulation and
Reflection Inference Rule
The interpreter

Page

13
i
31
40

58

68
68
78
86

101
102
105
109

126

129

132

187

SUMMARY

In the recent years many proposals were made to
integrate functional and logic programming [2]. Among them
equational logic programs were of special interest, since
the main semantic properties of logic programs hold also for
equational logic programs such as the existence of a
canonical domain of computaticn, the existence of a least
model semantics, or the soundness and completeness for

derivations of the implementation model, see [15],[1€6].

There are different approaches to handle equational
theories such as paramodulation, narrowing [7],[23].[24], cr
complete sets of transformation [8], these transformation
rules are an extension of the rules invented by Martelli in
[22] to compute the mgu of two expressions. Another approach
is to flatten a goal and ﬁrcgram clauses and then to apply
SLD-rescluticn [1],[6].

In this thesis, the unification of functicnal and logic

programming is given using the eguational logic programming.

The thesis is divided inte 5 chapters. Chapter 1,
inclundes the basic definitieons for the first order logic and
equaticnal logic, - the definition of substitution and the
unification algorithm, the model and fixpoint semantics, and

the SLD-resolution inference rule.

In chapter 2, a universal unification algerithm is
defined as a procedure which accepts a Horn equational
theory and a set of equations and generates a set of

solutions for the given unification problem.

The paramodulation inference rule is given in chapter 3
to deal with the eguational theory.

In chapter 4, the complete set of trangformations is
given to overcome the disadvantage of paramodulation, since
in any subgoal many subterms are capable of applying
paramodulation and all of them must be investigated to get
completeness. Finally lazy resclution inference rule is used
with paramcdulation or with complete set of transformations
tc compute goals of an equational logic programs.

An implementation using ada language of the
paramcdulation inference rule is given in chapter 5.

All the inference rules defined in this thesis are

strong complete, i.e. refutation 1is independent of a
selection function, [12],[20].

ii

CHAPTER ONE

INTRODUCTICH

CHAPTER ONE

INTRODUCTION

This chapter will discuss the basic definitions which
are needed for the theoretical foundations of legic and
egquational logic programing, its syntax and semantics. The
syntax is concerned with well-formed formulae and the first
order theory while the semantics is concerned with the
meaning of the well-formed formulae and the symbols they
contain. This semantics is given by the model thecretic
semantics of formulae. Finally inference rule is given to
show how new formulae can be derived from the old formulae.
The material of this chapter can be found in [12,20,18,192].

1.1 Foundation of Logic Programming

First Order Theories and Basic Definitions

1. An alphabet consists of seven classes, namely, variable
symbols, constant symbols, function symbols, predicate
symbols, connectives, guantifiers and punctuation

symbols.

The follewing notation for the different types of
alphabets will be used ;

variable symbols Vi Z U,V Wynoos
constant symbols ab,c,..y
function symbols t,g,h,...,
predicate symbols PrdeF,senns
connectives P Tt

quantifiers i,v¥,
punctuation symbeols { ,)}, ‘,°'

The last three classes are the same for all alphabets

2, A term is defined inductively as follows

.

{a) A variable is a term.

{b) A constant is a term.

{c) If f is an n-ary function symbcl and ti,...,tn are terms
then f{t1,...,tn) is alsc a tern.

3. A ground term is a term which does not contain any
variables. '

4. A well-formed formula (simply a formula} is defined

inductively as follows:

(ay If p is an n-ary predicate symbol and ti,...,ts are
terms then p(ti,...,ta] is a formula called atomic

formula or atom.

{by) If F and G are formulae then -F, FiG, FvG, FoG and FG

are also formulae.

(c} If F is a formula and x is a wvariable then (v¥xF) and

({IxF) are alsc formulae.

5. A ground atom is an atom which does not contain any

varlables.

The set of all well-formed formulae constructed from
the symbols cf the alphabets is called a first order
language.

¥ is called a universal quantifier,
3 is called an existential guantifier,
A is called a conjunction and v is called a disjunction.

6. The scope of ¥x in vxF and 3x in 3IxF is the formula F,

7. Let Qx1:F{x1,...,%) be a formula, where Q is either ¥ or
3. The occurrence of x1 in F{x1,...,xm}) is called bound.
If the occurrence of a variable is not bound then it is a

free occurrence.

8. A closed formula is a formula with no free occurrences of

any variable.

9. The Universal Closure of a formula F, dencted by ¥F, is
the closed formula obtained by adding a wuniversal
quantifier of any wariable having a free occcurrence in
it, and the Existential closure of F, dencted by 3F, is
obtained by adding an existential quantifier for every
variable having a free occurrence in it.

In all formulae the two quantifiers 3,¥v have a priority
over [(-,A,¥), this means that 3Ixp(x,¥)sg{x) means that

(Ixp(x,¥))rq({x)

Examples

1. 3xvy <(x,y) is closed while 3y<(x,y) is not closed since
there exist a free occcurrence of x.
The closed formulae have only one value either true or
false, for example, if the domain of x is N then ¥x<({x,0)
is always false, while v¥x({<({x,2x}r>{x,0))is always true.

2, If F is p(x,y)ag{x) then the universal closure cof F

is vxvy(pix,y)Aaq(x)), and the existential closure of F is
IxIyip(x,¥),9(x)).

Definition
A first order theory consists of

a) an alphabet,

by the first order language which is constructed from the
symbols of this alphabet,

c] a set, of axioms, which is a designated subset of the
well-formed formulae,

d) a set of inference rules that are operations by which

new formalae can be generated from the given formulae.

In section 1.6 it will be explained in more details

what is meant by an inference rule.

Definitions

1. A 1literal is an atom or the negatien of an atom. A
positive literal is an atom and a negative literal is the

negation of an atom.

2., An expression is either a term, literal or a conjunction
of literals. A simple expression is either a term or an
atom.

3. A clause is a formula of the form ¥Xi...¥Xs{Liv...vLam]
where each Li is a literal and Xi,...,Xs are the
variables occurring in the fermula (Liv...vIm), 1.e. a
clause is a closed formula of the form
¥¥1. . .¥Es{Inv...vLm}.

Remark: The clause ¥X1...¥Xs(A1v. . .vAkvsB1v. . .vaBn) is
equivalent to VX1...9Es[[A1v. . .vBKR)«(Bia. . .ABR) .

If Al ... Ax, Bi,...,Bn are all atoms, and
X1;...,Xs are all the variables occurring in these
atoms then ¥X:i...¥Xs[{Aiv...vAk)«(Bia...ABn)] will
be denoted by A1,...,2Ax« Bi,...,Bn

Thus in any clausal notation all variables are assumed
to be universally quantified, the right term (Bi,...,Ba} is
called the antecedent or the body of the clause, and the
left (A1,...,8) is called the conseguent or the head of the

clause.
Note that the commas in the body {Bi,...,Bn) denote

conjuncticn and the commas in the head Ai1,...,Ax denote

~disjunction.

Definitions

1. A definite program clause is a clause of the form

A¢ Bi,...,Bn which contains only cne atom in the head.

Any definite program clause is called also a procedure.
A is called the procedure name and (Bi,...,Bn) is called the
procedure body, each Bi is called a procedure call.
The semantics of this clause is "for all assignment of each
variable, if Bi,...,Bn are all true then & is alsoc true".

2. A unit clause is a clause of the fomm A~ o i.e. a
definite clause with empty body. This means that for
each assignment of each variable A is true, it is also

called a definite program clause.

3.

A definite program is a finite set of definite program
clauses.

A definite goal is a clause of the form pe Bi,...,Bn
which is a clause with empty head. In this clause each B
is called a subgoal. If Xi,...,¥%s are all the wvariables
of the goal oc Bi,...,Brn then this clause is eguivalent
to ¥Xl...¥Xs({-Biv...vaBn) or =3X1...-3%s{Bis...ABn).

The empty clause, denoted by o, is the clause with empty
head and empty body.

A Horn clavse is a clause which is either a definite
program clause or a definite goal.

In general definite programs are used to compute

predicates but they can be alsc used to compute functions.

Example

Consider the following three predicates :

fact(x,y¥)=true if x!l=y,

fact(x,y)=false if ==y,

mule{x,y,2}=true If z= x+vy,

mult{x,y,2)=false if z» xvy,

sum{x,¥,z)=true if z= x+y,

sum{x,¥,z}=false 1if z=xty,
and let s(x) be the successor function s(x)=x+l.

Consider the definite program

1. fact(0,s{0))« o
2, fact{s(x),u)« fact({x,v),mult{s{x),v,u)

3. mult{x,0,0)« o
4., mult{x,1,x)« o
5. mult{x,s(y),z)e mult(x,y,v) ,sum{x,v,z}
6. sum{x,0,x)e o

T. sum{x,s(y},2}¢ sum{s(X),¥,Z}

and the goal
ae fact{s(s(s{0})).,¥)

This goal can answer the gquestion which element is the
factorial of s(s(s(0})).

The formulae 1..7 are called axioms. This program can
be regarded as the set of axioms of a first order theory.
The language of this theory is given by:

1. The constants @,s{C).

The variakles x,v,u,=z,¥.

3. The function symbol “s" which gives the successor of Iits

arguments,

4. The predicate symbols Fact, muli, sum.

1.2 Foundation of Equational Logic Programming

Basic Definitions

An alphabet in the first order theory of an eguational
logic program is the same as that defined for logic programs
except that it includes a new symbol EQ.

Definitions

1. An equation has the form EQ{s,t}), where s and t are
terms. If s=t them EQ(s,t} is a trivial eguation,

