ROLE OF ERYTHROPOIETIN IN HIGH RISK NEONATES

THESIS

Submitted in partial fulfillment of M.D. Degree in **Pediatrics**

By

Ibrahem Saad Hasan Abu-Saif

M.B.,B.Ch., M.Sc.
Faculty of Medicine, Ain Shams University

Supervisors

Prof. Mohamed Foad El-Badrawy Dr. Nancy Abdel-Aziz Soliman

Prof. of Pediatrics Ain Shams University Ass. Prof. of Pediatrics
Ain Shams University

Prof. Ali Khalifa Ali

Prof. of Biochemistry Ain Shams University Dr. Eman Mohamed El-Salhy

Lecturer of Biochemistry
Ain Shams University

Pediatrics Department FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 1995

TO...

To every one who has taught me a letter ..

To my parents .. To my Family ..

To all the Children.

Acknowledgments

First and above all, thanks to Allah. to whom I relate any success in achieving any work in my life.

I would also like to express my utmost gratitude to my Professor Dr. Mohamed Foad El-Badrawy, Professor of Pediatrics, Ain Shams University, for giving me the privilege to work under his supervision.

I am also deeply indebted to the great help offered by Ass.Professor Dr. Nancy Abdel Aziz Soliman, Assistant Professor of Pediatrics, for her useful advice, great help and constant guidance throughout this work.

My deep thanks are also extended to Prof. Dr. Ali Khalifa Ali, Professor of Biochemistry, Ain Shams University, who has offered me many valuable remarks and lot of precious time and effort.

I also extend my deepest thanks toDr. Eman Mohamed El-Salehy,Lecturer of Biochemistry, Ain Shams University, for her valuable help and cooperation.

I would like to thank DT. Mahmoud Abd-El-Wahaab, Biochemistry Dept., Ain Shams University for his kind help and cooperation in the practical part of this work.

Last but by no means least, I acknowledge all my senior and Junior colleagues of Pediatrics Department, and Neonatal Intensive Care Unit team, who helped me in one way or another in achieving this work.

INDEX

	Contents	Page
*	List of tables	i
*	List of figures	iii
*	List of abbreviations	iv
*	Introduction	1
*	Aim of the work	4
*	Review of Literature:	5
	High Risk newborn	5
	Perinatal asphyxia	11
	Prematurity	27
	Intrauterine growth retardation	43
	Infants of diabetic mothers	47
	Erythropoietin	57
*	Subjects and Methods	66
*	Results	74
*	Discussion	109
*	Summary & Conclusions	119
*	Recommendations	124
*	References	125
*	Arabic summary	

LIST OF TABLES

Tab. No.	Title	Page
1	High risk infants	6
2	Etiological classification of high risk infants	7
3	Conditions that predispose the fetus and newborn to asphyxia	15
4	APGAR scoring system	19
5	Factors affecting APGAR score	20
6	Sarnat and Sarnatstages of the hypoxic ischemic encephalopathy (HIE)	25
7	Effect of perinatal asphyxia	26
8	The external criteria for gestational age assessment	30
9	The neurological cirteria for gestational age assessment	30
10	Hematological criteria of P.T. and F.T infants	32
11	White's classification of maternal diabetes	49
12	Anemia due to reduced red cell production	61
13	Human recombinant erythropoiesis stimulating factors	69
	Tables of Results	
I	Clinical and laboratory data of IDM	75
П	Clinical and laboratory data of PA	77
Ш	Clinical and laboratory data of IUGR	79
IVA	Clinical and laboratory data of PT infants (received r-HuEPO treatment)	81a
IVB	Clinical and laboratory data of PT infatns (not under r-HuEPO treatment)	81b
V	Laboratory data of PT infants after 2 weeks age	82
VI	Laboratory data of PT infatns after 6 weeks age (after treatment)	83
VII	Clinical and laboratory data of control group	85
VIII	Comparison between infants of diabetic mother and controls regarding the clinical data	86

LIST OF TABLES (CONT.)

Tab. No.	Title	Page
ΙX	Comparison between infants of diabetic mother and controls regarding the laboratory data	87
X	Comparison between infants with P.A and controls regarding the clinical data	88
XI	Comparison between infants with PA. and controls regarding the laboratory data	89
XII	Comparison between infants with PA. and controls regarding the blood gas values	90
XIII	Comparison between infants with IUGR. and controls regarding the clinical data	91
XIV	Comparison between infants with IUGR. and controls regarding the laboratory data	92
XV	Comparison between infants with IUGR. and controls regarding the blood gas values.	93
XVI	Comparison between P.T infants and control regarding clinical data.	94
XVII	Comparison between P.T infants and control regarding laboratory data.	95
XVIII	Comparison between laboratory data of P.T infants at birth and at 2 weeks	96
XIX	Comparison between laboratory data of P.T infants before and after treatment.	97

LIST OF FIGURES

Fig.	Title	Page
1	Graph for gestational age assessment	31
2	The relationship between hemoglobin concentration and plasma EPO	35
3	Hemoglobin oxygen dissociation curve in normal term infants.	37
4	Effect of blood transfusion on weight gain in a group of L.B.W. infants	39
5	Schematic representation of erythropoiesis	64
	Figures of Results	
Ι	EPO in different groups versus control	99
п	Hb level in different groups versus control	100
Ш	Reticulocytic count different groups versus control	101
IV	PH levels in infants with PA and IUGR versus control	102
V	PCO2 levels in infants with PA and IUGR versus control	103
VI	PO2 levels in infants with PA and IUGR versus control	104
VII	Rate of blood transfusion in PT group IVa in comparison to IVb and control group	105
VIII	Correlation between EPO and hemoglobin percent in all groups studied	106
IX	Correlation between EPO and PCO2 in infants with prenatal asphyxia, and IUGR	107
X	Correlation between EPO and PO2 in infants with prenatal asphyxia and IUGR	107
XI	Correlation between EPO and PH in infants with prenatal asphyxia and IUGR	107

LIST OF ABBREVIATIONS

AGA = Appropriate for gestational age

BFU-E = Burst forming unit - erythroid

bpm = beat per minute

CFU-E = Colony forming unit erythroid

DM = Diabetes mellitus

e.g. = For example

EPO = Erythropoietin

g = gram

Hb = Hemoglobin

HIE = Hypoxic ischemic encephalopathy

IDDM = Insulin dependent diabetes mellitus

IDM = Infant of diabetic mother

IU = International unit

IUGR = Intra uterine growth retardation

IUGR API = Intra uterine growth retardation adequate ponderal index

IUGR-LPI = Intra uterine growth retardation low ponderal index

K = Potassium

Kg = Kilogram

L/S ratio = Lecithin/sphingomylin

LBW = Low birth weight

LGA = Large for gestational age

mEq = Milli equivalent

mg = milligram

min = minute

ml = milli litre

LIST OF ABBREVIATIONS (contin.)

mRNA = Messenger ribonucleic acid

NS = Not significant

OFC = Occipito frontal circumference

PCO2 = Partial carbon dioxide tension

po2 = Partial oxygen tension

PT = Preterm

RDS = Respiratory distress syndrome

Retic. = Reticulocyte

rHuEPO = Recombinent Human Erythropoietin

RIA = Radioimmunoassay

S = Significant

S.L.E = Systemic lupus erythrematosis

SD = Standard deviation

sec = second

SGA = Small for gestational age

SN = Serial number

TORCH = Toxoplasmosis, others, rubella, cytomegal virus, hepatitis.

TTN = Transient tachypnea of newborn

VS = Versus

Y = Year

INTRODUCTION

INTRODUCTION

Synthesis of red cells is regulated by a specific hormone Erythropoietin. The prohormone of erythropoietin is produced in epithelial cells of the glomerular tuft. A serum factor activates it to biologically active erythropoietin. This process is stimulated by a decrease in tissue oxygenation.

The principal action of erythropoietin is to induce differentiation of stem cells into an erythrocytic sequence, So any disorder in the production of erythropoietin causes many hematological disturbances and vice versa as in some high risk neonates.

The term high risk infant designates infants who should be under close observation by experienced physicians and nurses. Approximately 9% of all births require special or neonatal intensive care (Bjerkedahi et al., 1973).

Preterm infants meet many major problems exposing them to many hazards necessitating careful handling. These problems are due to functional and anatomical immaturity of different organs. Among these problems are hematological problems especially anemia of prematurity (Dallman, 1981).

Preterm neonates are more liable to anemia than term neonates. The etiology of this condition remains poorly understood inspite of active investigations. Various factors are

probably responsible for anemia of prematurity such as erythropoietin deficiency, shortened red cell survival, vitamin E deficiency, repeated blood sampling and relatively more rapid rate of growth in preterm as compared to term neonates (Wardrop et al., 1978).

Stockman et al. (1984), found that serum erythropoietin concentrations in preterm infants are inappropriately low for the degree of anemia when compared with similar hemoglobin values as a physiological response to impaired tissue oxygenation.

However, the increase in erythropoietin concentration early in the course of anemia appears to be ineffective in eliciting a reticulocytic response, but it may predict which infants would be likely candidates for treatment with recombinant erythropoietin as an alternative to blood transfusion.

Ruth et al. (1988) found that a high erythropoietin level after normal pregnancy indicates an increased risk for perinatal brain damage.

It was found that small for gestational age fetuses develop tissue hypoxia due to hypoxaemic hypoxia secondary to reduced utero-placental perfusion which in turn stimulates erythropoietin production in fetal life. A compensatory increase in fetal plasma erythropoietin in Rhesus isoimmunized pregnancies was also recorded as a result of chronic fetal hypoxia especially in severe cases leading to erythropoietic abnormalities (Shannon et al., 1991).

Infants of diabetic mothers (IDM) are regarded fragile infants, as they are liable to many grave complications such as hypoglycemia, hypocalcemia, respiratory distress, jaundice, polycythemia, renal vein thrombosis and congenital anomalies. Intrauterine hypoxemia or placental vascular insufficiency leads to neonates with reduced iron stores at birth and an increased erythropoietin level. Infants of diabetic mothers are also at risk for such changes (Chockalingam et al., 1987).