

AIN SHAMS UNIVERSITY
FACULTY OF ENGINEERING
IRRIGATION & HYDRAULICS DEPARTMENT

CHOICE OF A SUITABLE FORMULA OF SEDIMENT TRANSPORT FOR SHORE PROTECTION AT THE NILE DELTA SEA COAST.

BY

AHMED FATHY ABD EL-RAZIK AGMY

B.Sc. Civil Engineering, Ain Shams University, Faculty of Engineering

A Thesis Submitted in Partial Fulfillment for M.Sc. Degree

627.122

Supervised by

63638

Prof. Dr. ABD EL FATTAH EL-FIKY

Head of Irrigation & Hydraulics Dept.,
Professor of Hydraulics, Harbor & Coastal
Engineering, and Inland Navigation,
Irrigation & Hydraulics department,
Faculty of Engineering,
Ain shams University.

Prof.Dr. ABD EL-MOHSEN EL-MONGY

Professor of Harbor & Coastal Engineering, and Inland Navigation, Irrigation & Hydraulics Department, Faculty of engineering, Ain Shams University.

Dr.SONIA YOUSSEF EL-SERAFY

Lecturer in Irrigation & Hydraulics Department, Faculty of Engineering, Ain Shams University.

> Cairo, Egypt 1997

TITLE SHEET

Name : Ahmed Fathy Abd EL-Razik

Degree : Master of Science

Department : Irrigation & Hydraulics

Faculty : Engineering

University : Ain Shams

Graduation Year : 1993
Degree Granting Year : 1997

EXAMINERS COMMITTEE

Thesis Title : Choice of a Suitable Formula of

Sediment Transport for Shore Protection at the Nile Delta Sea

FIOLECTION At the Mile Delta D.

Coast.

By : Ahmed Fathy Abd EL-Razik Agmy

signature

1-prof.Dr. Abd EL-Fattah EL-Fiky

Head of Irrigation & Hydraulics Dept.,

Prof.of Hydraulics, Harbor Engineering and
Inland Navigation, Faculty of Engineering
Ain Shams University

2-Prof.Dr. Abd EL-Mohsen EL-Mongy
Prof. of Harbor Engineering and Inland
Navigation, Faculty of Engineering
Ain Shams University

3-Prof.D. MOHAMED IBRAHIM BALAH

Prof. of Harbor Engineering

Navigation, Faculty of Engineering

Sues Canal University

4-Prof.Dr. MOHAMED MOHAMED NOUR EL-DIN
Prof. of Irrigation & Hydraulics
Faculty of Engineering
Ain Shams University

THE AUTHOR

Name : Ahmed Fathy Abd EL-Razik Agmy,

Date of Birth : 15/11/1970,

Place of Birth : Cairo-Egypt

B.Sc. : (Civil Engineering) Faculty of

Engineering, Ain Shams University, Cairo, Egypt -(June

1993),

Present Position: Demonstrator, Irrigation &

Hydraulics Dept., Faculty of Engineering, Ain Shams University, Cairo, Egypt (1993-

1997).

ACKNOWLEDGMENT

I wish to express my deep gratitude to **Prof. Dr.**Abd EL-Fattah EL-Fiky, Head of Irrigation and Hydraulics Department, Professor of Hydraulics, Harbor & Coastal Engineering and Inland Navigation for his kind supervision, support, guidance, help, encouragement and useful suggestions since the start of the work.

I am deeply indebted to **Prof. Dr. Abd EL- ohsen EL-Mongy**, Professor of Harbor & Coastal Engineering and Inland Navigation for his constant supervision, planning, generous support, helpful advice and constructive criticism throughout this work.

Special thanks and gratitude to **Dr. Sonia Youssef El-Serafy**, Lecturer in Irrigation and
Hydraulics Department for her kind, long discussion
and the revision of the manuscript.

I wish to extend my thanks to my colleagues and all the staff of Irrigation and Hydraulics Department, Ain Shams University, for their help and encouragement.

Special appreciations and deep gratitude to all my family for their encouragement.

Special gratitude to my father, my mother and my wife for their kind cooperation and support.

STATEMENT

This dissertation is submitted to the Irrigation & Hydraulic Department, Faculty of Engineering, Ain Shams University in the fulfillment of the requirements for the Degree of Master of Science.

The work in this Thesis was carried out in the Irrigation & Hydraulic Department, Faculty of Engineering, Ain Shams University, from January 1994 to June 1997.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date

Name

/ / 199

Signature: Ahad fathy

: Ahmed Fathy Abd EL-Razik Agmy

ABSTRACT

Ahmed Fathy Abd El-Razik Agmy. CHOICE OF A SUITABLE FORMULA OF SEDIMENT TRANSPORT FOR SHORE PROTECTION AT THE NILE DELTA SEA COAST. Master of Science, Ain Shams University.

The main purpose of this study is to choose the most suitable formula for calculating the longshore sediment transport rate (change in shoreline profile), along the Egyptian Northern Coast. Baltim shoreline has been chosen as an example for the Egyptian coastline.

First, the different equations which calculate the current velocity and the sediment transport rate were studied. Then four formulae of the different formulae, (CERC, Galvin, Brebner and S.P.M.) were chosen and a numerical model was constructed.

Second, the response of the model to the changing of the different coastal variables (wave period, wave angle and wave height) were studied and a comparison between their results showed that the wave height is the most dominating parameter.

Third, the model was verified at Baltim shoreline and computed shorelines were compared to the measured shorelines. It was found that the S.P.M. is the most suitable formula for the Egyptian Coastline.

Finally, the model was applied using S.P.M.

formula to predict the shoreline at Baltim in the future or to reproduce missing maps in the past.

KEY WORDS: Velocity of current, Longshore sediment transport, Numerical Modeling.

SUMMARY

INTRODUCTION:

Shoreline changes are caused mainly by current. These current are caused by oblique waves attaching the shoreline. Thus, these waves are the main cause for shoreline changes.

The Nile-Delta coast which extends from Alexandria to Port Said is about 300 km long. This coast is an evident example for the man-made in coastal processes. Man-made takes many forms, but it is shown clearly in the Nile-Delta coast due to the construction of various coastal structures a long it.

Structures constructed along the shoreline are the main reason for the changes of the stability of the shoreline, thus, changing the shape of the shore. These structures may be groins, jetties, seawall or breakwaters, which entrap or intercept the sediment movement. The shoreline may return to its state of equilibrium after long time or changes its shape to maintain its equilibrium.

Indeed, the most serious large scale and long term coastal erosion results from the interception of river sediment to reach the coast by the construction of the river dams. The construction of Aswan High Dam during this century has a sudden and disastering effects on the Nile-Delta coastal area. These effects presented in the interruption of Nile River discharge of sediment which reach the coast. Thus the action of waves and currents will continue to erode and change the principal features of the shoreline of the Nile-Delta.

OBJECTIVE OF THE STUDY:

The main objective of this study is to predict shoreline changes along the Egyptian coastline using the most suitable formula for sediment transport calculation.

The thesis cosists of the following chapters:

Chapter One: (Introduction).

Contains an introduction for the research, the objective of the research, and the followed study phases.

Chapter Two: (Literature Review).

Contains a review of the pre-published work for sediment transport rates, transformation of waves from deep to breaking conditions, refraction of waves, and concepts of sediment transport rates according to the one-line theory.

Chapter Three: (Construction of the Numerical Model).

Contains the different formulae. It also displays the equations and concepts used in the model (one-line theory, waves decay in the breaking zone, continuity of sediment, and sediment transport rate formula), and the calculations procedure in the model as wall.

<u>Chapter Four: (Numerical Model Response to the different Variables).</u>

Contains the tests of the sensitivity of the model due to different coastal variables, the comparison between the four formula and the choice of the most suitable formula for the Egyptian Shoreline. A good level of confidence in the model resultwas perceived from the executed comparison.

Chapter Five: (Model Verification and Application).

Contains a comparison between the model results and field results for selected shoreline segments. The measured data for the shoreline segments is collected. The model is applied with the suitable formula to predict shoreline changes for some shoreline segments in the Egyptian Shoreline.

<u>Chapter Six: (Conclusions and recommendations).</u> Appendices:

Contains a list of references and examples of input and output files of the model.

TABLE OF CONTENTS

PAG	_
TABLE OF CONTENTS	.i
LIST OF FIGURES i	LV
LIST OF SYMBOLS	vi
CHAPTER -1-	
INTRODUCTION	
1.1 INTRODUCTION	1
1.2 OBJECTIVE OF THE STUDY	3
1.3 WAY OF APPROACH	4
CHAPTER -2-	
LITERATURE REVIEW	
2.1 COASTAL ZONE	
2.2 SHORELINE MODELING AND ONE LINE THEORY	
2.3 PREDICTION OF LONGSHORE CURRENTS VELOCITY AT TH	
MID-SURF ZONE	16
2.3.1 CONTINUITY APPROACH	17
2.3.2 ENERGY FLUX APPROACH	18
2.3.3 MOMENTUM FLUX APPROACH	20
2.4 SEDIMENT TRANSPORT CALCULATIONS	23
2.4.1 LONGSHORE SEDIMENT TRANSPORT RATES	23
2.4.1.1 WAVE POWER APPROACH	25
2.4.1.2 THE ENERGETIC MODEL APPROACH	26
2 A 2 THE CROSS-SHORE SEDIMENT TRANSPORT RATE	31

CHAPTER -3-

CONSTRUCTION OF THE NUMERICAL MODEL (CGSB)
3.1 INTRODUCTION33
3.2 MODEL "CGSB"
3.2.1 BASIC ASSUMPTION
3.2.2 THEORY OF "CGSB"35
3.3 LONGSHORE SEDIMENT TRANSPORT RATE FORMULATION 37
3.3.1 TRANSFORMATION OF DEEP CONDITION TO BREAKING
WAVE CONDITIONS 42
3.3.2 DEPTH OF SAND TRANSPORT FORMULATION (CLOSURE
DEPTH) D _c 44
3.4 CALCULATION PROCEDURE OF "CGSB"4 4
3.5 MODEL STRUCTURE50
3.6 BOUNDARY CONDITIONS51
21
3.7 COMMENTS53
3.7 COMMENTS 53
3.7 COMMENTS 53 CHAPTER -4-
CHAPTER -4-
CHAPTER -4- NUMERICAL MODEL RESPONSE TO THE DIFFERENT VARIABLES
CHAPTER -4- NUMERICAL MODEL RESPONSE TO THE DIFFERENT VARIABLES 4.1 INTRODUCTION
CHAPTER -4- NUMERICAL MODEL RESPONSE TO THE DIFFERENT VARIABLES 4.1 INTRODUCTION
CHAPTER -4- NUMERICAL MODEL RESPONSE TO THE DIFFERENT VARIABLES 4.1 INTRODUCTION
CHAPTER -4- NUMERICAL MODEL RESPONSE TO THE DIFFERENT VARIABLES 4.1 INTRODUCTION
CHAPTER -4- NUMERICAL MODEL RESPONSE TO THE DIFFERENT VARIABLES 4.1 INTRODUCTION
CHAPTER -4- NUMERICAL MODEL RESPONSE TO THE DIFFERENT VARIABLES 4.1 INTRODUCTION
CHAPTER -4- NUMERICAL MODEL RESPONSE TO THE DIFFERENT VARIABLES 4.1 INTRODUCTION
CHAPTER -4- NUMERICAL MODEL RESPONSE TO THE DIFFERENT VARIABLES 4.1 INTRODUCTION
CHAPTER -4- NUMERICAL MODEL RESPONSE TO THE DIFFERENT VARIABLES 4.1 INTRODUCTION
CHAPTER -4- NUMERICAL MODEL RESPONSE TO THE DIFFERENT VARIABLES 4.1 INTRODUCTION

5.3 VERIFICATION OF "CGSB86
5.4 VERIFICATION RESULTS
5.5 APPLICATION OF "CGSB" 94
CHAPTER -6-
CONCLUSIONS AND RECOMMENDATIONS
6.1 COCULUSIONS100
6.2 RECOMMENDATIONS FOR FUTURE RESSEARCHES 101
APPENDIX
A-INPUT FILEES OF THE NUMERICAL MODEL "CGSB"A-1
B-OUTPUT FILEES OF THE NUMERICAL MODEL "CGSB" B-1
C-LIST OF REEFERENCE