Surgical Treatment of Gastro-oesophageal Reflux and Hiptus Hernia

ESSAY

Submetted for Partial Fulfilment of Master Degree in

GENERAL SURGERY

Presented By

Abdel Naby Ibrahim Ildisouky Hassan Ali M.B.B.CH.

617.548 A I

Supervised By

Prof.Dr. Ahmed Tawfic Zaky Souidan Proffessor of General Surgery

Ain Shams University

Dr. Hussein Abdel Alim Boshnak

Assistant Proffessor of General Surgery Ain Shams University

> Faculty of Medicine Ain Shams University 1904

Acknoldgements

I would like to express my deepest gratitude to Prof. Dr. Ahmed tawfic Zaky Souidan, Proffessor of General Surgery faculty of Medicine, Ain Shams University, for his continous encouragement and his kind supervision. He had helped on to put me in the direct track.

I am indebted to Dr. Hussein Abdel Alim Bushnak Assistant Prof. of General Surgary, Faculty of medicine, Ain Shams University, for his close supervision, sincere guidance, valuable instructions and precious time and effort he genoursly gave me in this work. He had urged on me with extreme patience and all kindness.

Thanks to my wife who made this work possible.

CONTENTS

Chapter I Historical Aspects

Chapter II Anatomy of the Oesophagus and Gastro-Oesophageal Junction

- 2-1General Feature of the Oesophagus:
 - 2-1-1 Blood Suppl
 - 2-1-2 Nerve Supply
- 2-2 Gastro-esophageal Junction
- 2-3 Oesophageal Hiatus
- 2-4 Anatomical factors preventing reflux
 - 2-4-1 Gastric sling factors
 - 2-4-2 Phreno-oesophageal ligment
 - 2-4-3 Mucosal Rosette
 - 2-4-4 Pinch cock action of the right crus of the diaphragm
 - 2-4-5 Gastro-Oesophageal angle
 - 2-4-6 Intro-abdominunal segment of the oesophagus
 - 2-4-7 Lower oesophageal sphincter

Chapter III Physiology of ocsophageal body and lower ocsophagus

- 3-1Peristalsis
 - 3-1-1 Primary Peristalsis

- 3-1-2 Secondary Peristalsis
- 3-1-3 Tertiary peristalsis
- 3-2 Lower ocsophageal sphincter
- 3-3Factors affecting lower ocsophageal sphincter pressure
- 3-4 Theories of lower oesophageal closure mechanism
 - 3-4-1 Sphincter theory
 - 3-4-2 Mechanical theary
 - 3-4-3 Gastric volume
- 3-5 Relation of lower oesophageal sphincter length and competency of the cardia
- 3-6 Defence mechaisms against gastro-oesophageal reflux
 - 3-6-1- Ocsophageal clearance
 - 3-6-2- Extrensic Mechanical Factors
 - 3-6-2-1 Intra abdominal segment
 - 3-6-2-2 Diaphragmatic Crura
- 3-6-3 Adaptive lower oesophageal sphincter pressure response

Chapter V Patho Physiology

- 4-1- Λetiology:
- 4-2 Physical Factors:
- 4-3 Gastric factors and bile reflux:
- 4-4 Grading of reflux oasophagitis
 - 4-4-1 Endoscopic grading:

- 4-4-3 Histological grading:
- 4-5 Pathogenesis of reflux oesophagitis
 - 4-5-1 Mucosal response
 - 4-5-2 Motor response to acid
- 4-6 Endoscopic picture
 - 4-6-1 Naked eye picture:
 - 4-6-2 Microscopic picture:
 - 4-6-3 Alkaline oesophagitis:

Chapter VI CLINICAL PICTURE

- 5-1 Symptomatology of gastro-oesophageal reflux
 - 5-1-1 Heart Burn:
 - 5-1-2 Dysphagia:
 - 5-1-3 Chest Pain:
 - 5-1-4 Bleeding:
 - 5-1-5 Chronic respiratory sympstoms:
- 5-2 Clinical picture of gastro-oesophageal reflux in children and infants
- 5-3 Sympthomatology of hiatal hernia

Chapter VI INVESTIGATION

- 6-1 MUCOSAL EVALUATION
 - 6-1-1 Upper gastro-intestinal endoscopy:

- 6-2 Endoscopic Transmucosal Potential difference
 - 6-2-1 Upper Gastro- intestinal Series
- 6-3 Radiological signs characterize Reflux Oesophagitis:
 - 6-3-1 Oesophageal fold and Polyp:
 - 6-3-2 Mucosal Erosion and Ulceration:
 - 6-3-3 Scarring:
 - 6-3-4 Barrett's oesophagus:
- 6-4 EVALUATION OF
 - 6-4-1 Radiologic Evaluation:
 - 6-4-2 Oesophageal Manometry:
 - 6-4-3 Oesophageal Transit Scan: "Oesophageal Santigraphy"
- 6-5 SYMPTOMATIC EVALUATION
 - 6-5-1 Acid Perfusion test (Bernstein test)
- 6-6 DOCUMENTATION OF REFLUX
 - 6-6-1 Prolonged oesophageal PH monitoring:
 - 6-6-2 Gastro-ocsophagesl reflux scan:

Chapter VII Medical Treatment

- 7-1 General measures.
- 7-2 Drug therapy
 - 7-2-1 Motility Modulating Drugs.
 - 7-2-2 Mucosa Coating Drugs:
- 7-3 Acid neutralizing & Acid suppressing drugs:

Chapter VIII SURGICAL TREATMENT

- 8-1 Indication:
- 8-2 Indication for antireflux surgery in infants and children:
 - 8-2-1 Independent of medical therapy
- 8-2-2 Indications based on Poor clinical response to medical treatment of at least 6 weeks duration, or repeated recurrence of clinical symptoms on withdrawal of medical therapy:
- 8-2-3 Prophylaxis:
- 8-3 Operations for Gastro-oesephageal reflux
 - 8-3-1 Belsey Mark IV operation
 - 8-3-2 Nissen fundoplication:
 - 8-3-3 Floppy Nissen Fundoplication:
 - 8-3-4 Trans abdominal approach
 - 8-3-5 Trans Thoracic Approach.
- 8-3-6 Hill procedure:
- 8-3-7 Angel Chick Prosthesis.
- 8-3-8 Modified Toupet Procedure:
- 8-3-9 Posterior Fundoplasty:
- 8-3-10 Pyloroplasty:
- 8-4 Treatment of Complication

- 8-4-1 Barrett's oesophagus
- 8-4-2 Reflux induced stricture of the oesophagus:
- 8-5 Transthoracic Parietal Cell vagotomy and collis-Nissen fundoplication
- 8-5 Short ocsophagus
- 8-6 Biliary-pancreatic reflux oesaphagitis:
- 8-7 Complications of surgery
 - 8-7-1 Intra- operative, and early postoperative complications.
 - 8-7-2 Oesophageal perforation:
 - 8-7-3 Splenectomy:
 - 8-7-4 Incarceration of the wrap.
 - 8-7-5 Delayed Complication:
- 8-8 EVALUATION OF OPERATIONS
- 8-9 Surgical treatment of Hiatal Hernia

Summary and conclusions

References

Chapter I Historical Aspects

The modern surgical treatment of oesophageal disease is the result of refinements of both anaesthetic and operative techniques as well as methods of assessing normal and abnormal anatomy and physiology.

The earliest ocsophageal operations were limited to cervical procedures, primary for removal of foreign bodies.

Early "hiatal hernia" surgery also emphasized anatomy rather than physiology.

Harrington "1928" reported 51 cases of diaphragmatic herniation, 27 of which had been repaired. Included among these cases were traumatic hernias as well as hernias through the oesophageal hiatus.

Emphasis was placed upon correction of the anatomic defect and closure the diaphragmatic hiatus, and this approach influenced the surgical theory of hiatal hernias for more than two decades.

Although Allison "1951" first carried the term reflux oesophagitis and clearly established gastro-oesophageal reflux as a cause for many of the symptoms experienced by patients with hiatal hernias, he, too, emphasized anatomic correction of the hernia, rather than correction of the abnormal distal oesophageal sphincter mechanism in these patients. Thus, several "hiatus hernia" operations

were described over the next few years, culminating in the reports by Nissen in Switzerland in 1967 and Skinner and Belsy in England in 1967 of the use of fundoplications to create an intro-abdominal oesophageal valve mechanism to control gastro-oesophageal reflux, these later operations introduced the era of true "anti-reflux" operations designed to restore a functional lower oesophageal sphincter mechanism.

In the past 40 to 50 years, a number of diagnostic studies have been refined to provide greater objectively in the assessment of oesophageal function.

With the development of manometric techniques and the ability to document gastro-oesophageal reflux with the intra-oesophageal pH electrode, surgical therapy for oesophageal motor disorders has become more of a science based on objective data.

Cannon "1907" first reported use of intraesophageal ballons to record oesophageal peristalsis.

Code and associates "1958", Vantrappenaned associates "1958", Texter and Colleagues "1957", and Ingelfinger "1959", refined ocsophageal manometric techniques and made substantial contributions to the understanding of normal and deranged oesophageal physiology.

Tuttle and Grossman "1958" developed the intraesophageal PH electrode for the direct intraluminal assessment of gastroesophageal reflux.

Tuttle and associates "1960" diagnosed "reflux" by slow withdrawal from the stomach of a pH electrode in? cm and noting wheather or not intraesophageal pH was 4 or less at least 4 cm above the pressure inversion point. Modification of intraoesophageal pH reflux testing followed.

Piccone and associates "1965" installed acid into the stomach, fixed the PH probe 5 to 10 cm above the oesophageal hiatus, and tried to evoke reflux by having their subjects perform valsalva manoeuvres, touch their toes and so forth

Kantrowiz and associates "1969" performed provocative pH testing with pH probe fixed 5 cm above the lower oesophageal sphincter.

Skinner and Booth "1970" further modified this test to what is now termed the standard acid reflux test [SART] which places 300 ml of 0.1 N. Hel into the stomach, fixes the PH electrode 5 cm above the lower oesophageal sphincter and documents the degree of pH drops below 4 with the patient supine, on the right side, on the left side, and in the trendelenberg position while standardized reflux aneuvers are performed.

An effort to circumvent the relatively "artificial" nature of the standard acid reflux test was the basis for prolonged lower oesophageal pH monitoring introduced by Spencer "1969" and Pottrick "1970".

Johnson and Deyeester "1974" first used "normal" controls in their evaluation of patients with abnormal gastroesophegeal reflux with 24 hour distal oesophageal PH monitoring.

They subsequently classified their patients into upright, supine and combined [upright and supine] refluxers. Since then, 24 hour monitoring of distal oesophageal PH has become the standard for objectively diagnosing gastroesophageal reflux. The acid perfusion test developed by Bernstein and Buker "1958" was proposed as a simple test for differentiating patients with chest pain of cardiac origin from those with oesophagitis.

Long experience with this test has indicated that a "positive Bernstein test" indicates only that the patient has an acid-sensitive oesophagus, and not that there is oesophagitis or gastroesophgeal reflux present.

Similarly, measurement of the potential difference of oesophageal mucosa was initially through to be of value in the assessment of patients with reflux disease, this study however is

technically difficult to perform and evaluate and has thus gained widespread use.

Radionuclide scanning using 44m T-sulfer collid to detect gastroesophageal reflux was first by fisher and associates "1976" and although the test is clearly more sensitive than either standard radiology or short-term PH monitoring in diagnosing reflux, it is unlikely to replace 24 hour distal PH monitoring as the most valuable diagnostic method.

Essophageal manometry and intraessophageal PH reflux test have become basic in the post operative assessment of most patients with benign oesophageal disease and are now used extensively to assess. objectively the operative results of procedure designed to treat abnormal gastroesophageal reflux and oesophageal motor function "Orriger 1992".