PITUITARY GONADAL ASPECTS IN INSULIN DEPENDENT DIABETIC FEMALES

M.D.THESIS

ВУ ф. /

RAAFAT SIDHOM AWAD
M.B.B.ch., M.Sc.
(GENERAL MEDICINE)

13.85.

54627

SUBMITTED FOR PARTIAL FULLFILLMENT FOR M.D. DEGREE IN MEDICINE

SUBMITTED SUPERVISORS

PROFESSOR, MOHAMID SAMIR SADIK
PROFESSOR OF MEDICINE

PROFESSOR, MOHAMID AMIN FIKRY PROFESSOR OF MEDICINE

Dr.ELHAM EZ-EL DIN ISLAM ASSISTANT PROF.OF MEDICINE

Dr. ABBAS ABDEL SALAM GHAZI ASSISTANT PROF. OF. GYNC. & OBEST.

616.462

R . s

FACULTY OF MEDICINE

AIN SHAMS UNIVERSITY

CAIRO

1988

ACKNOWLEGEMENT

I would like to express my deepest gratitude to professor Mohamid Samir Sadik for his supervision this work and for his trustful help.

I am also greatly indebted to professor Mohamid Amin Fikry for his supervision, useful suggestions and criticizing the present work.

My thanks and gratitude are also to Dr.Abbas Ghazi for his kind care and trustful supervision of this work .

I am also deeply grateful to Dr. Elham Islam for her kind guidance and useful suggestions which have brought about a noticeable improvement in the quality of this thesis.

Also I wish to thank professor Matthew Riddle ,under his guidance, I excuted the practical part of this work in the lab. of Endocrine Department at Ocegon Health Science University in the United States.

Finally I wish to thank Dr. Mahmod Radwan who helped me in excuting the statistical part of this work .

INDEX

* The aim of the work .	
 * Immunologic and genetic factors in autoimmune diseases. * Immunologic factors is part. 	1
* Immunologic factors in Diabetes Mellitus .	2
* Polyendocrine autoimmunity .	10
- Clinical aspects of	16
Clinical aspects of the polyendocrine syndromes.Pituitary autoimmunity .	17
	24
- Autoimmunity and gonads .	3 2
- Relation between polyendocrine serology and	32
disease.	
The normal pituitary gonadal axis.	33
- Manifestations of normal ovarian functions .	3 5
· Before the menarche .	3 5
· The menarche .	3 5
. After the menarche, normal menstrual cycle.	36
- Blood hormones levels during normal menstrual cycle.	37
 Ovarian steroids. 	39
· Gonadotropins .	39
· Prolactin .	4 5
	47
- Cellular interactions in the ovary during the	
nothal menstrual cycle (Paracrine control)	49
and neuroendocrine control of gonadotropine	43
secretion.	
	56

	- Hormonal control of changes in genital tract	
	epithelium,	
	 Metabolic aspects of sex steroid hormones . 	60
	* Tests of hypothalamic pituitary gonadal ovarian axis.	63
	- Estrogen secretion .	6 5
	- Progesterone secretion .	6 5
	- Ovarian anatomy .	67
	- Gonadotropin versus ovarian failure .	69
	. Serum gonadotrophins levels .	69
	. Gn-RH test .	69
	· Clomiphene test .	70
	. Human chorionic gonadotropin test .	71
	- Serum prolactio.	72
	- Skull C T scanning .	72
*	nypothalamic hypophyseal gonadal dycen	73
	tals.	
*	aypothatamic hypophyseal gonadal duos.	74
	dependent diabetes mellitus	
*	brabetic control and menstrual cycle	83
*	Materials and methods .	98
*	Results.	102
*	Discussion .	109
*	Summary and conclusion.	124
*	References .	133
*	Arabic summary .	136

AIM OF THE WORK

THE AIM OF THE WORK

Women with Type I Insulin Dependent Diabetes Mellitus have an increased risk of developing menstrual disorders throughout their fertile years. The site of dysfunction may be located any where along the hypothalamic-pituitary-gonadal axis. The aim of this work is to study the hypothalamic pituitary gonadal aspects as regard LH, FSH, Prolactin, Estradiol, and Progesterone in diabetic females with menstrual disturbances, trying to localize and define the site of dysfunction and the possible pathogenesis of such dysfunction.

REVIEW OF LITERATURE

IMMUNOLOGIC AND GENETIC FACTORS IN AUTOIMMUNE DISEASES

IMMUNOLOGIC FACTORS:

The complex mechanisms whereby autoimmunity develops and is pathologically perpetuated in animal models and human disease has been the subject of intensive investigations over the past several years. Recent investigation have emphasized two mechanisms that can lead to the production of autoantibodies: i)impaired immunoregulation, which causes the formation of autoantibodies against a family of ubiquitous autoantigens, ii) and the idiotype cascade, which can faster the production of autoantibodies (Shaenfeld et al., 1984).

IMMUNOREGULATION: The immune system control its latent tendency to produce autoantibodies by the regulatory influence of the two principles families of lymphocytes, T cells and B cells. There are two major divisions of T lymphocytes; helper (inducer) cells and suppressor cells. B cells with potential to produce autoantibodies are held in a dormant state by the action of suppressor cells, a lack of "help" from inducer cells, or both, and that in autoimmunity, an imbalance between the two kinds of T cells perturbs the immunoregulatory network, thereby activating the dormant, autoreactive B cells. A reduction in

suppressor cells is consonant with the immunoregulatory hypothesis of autoimmunization (Shaenfeld et al,1984). Increased helper-cell activity has been found in procainamide-induced lupis (Miller et al,1982). The drug or its netabolitie may inhibit cyclic AMP, an effect that stimulates helper cells. Methyldopa, which can cause drug-induced autoimmune hemolytic anemia, activates cyclic AMP, an effect that inhibits suppressor cells (Kirtland et al,1980). Hence, autoimmunity may result from either stimulatory or inhibitory effects of a drug on immunoregulatory cells. A primary B cell abnormality which by the production of lymphocytotoxic antibodies specific for suppressor cells self-perpetuates its own hyperactivity by removing negative influences (Anthony et al.1980).

Phamacologic modification of regulatory lymphocytes may also contribute to the pathogenesis of spontaneous autoimmune diseases. In systemic lupus the lymphocytes respond subnormally to adenosine, an activator of cyclic AMP adequately may contribute to both impaired suppressor cell function and excessive activation of helper cells. Of further interest is the finding of nutoantibodies against lipomodulin, an inhibitor of phospholipase A2, in systemic lupus, rheumatoid artheritis and dermatomyositis (Shaenfeld et al, 1984). By inhibiting the enzyme, lipomodulin decreases the availability of arachidonic acid and thus reduces the formation of prostaglandins. That effect

can in turn impair prostaglandin-dependent suppressor cells (Chouab et al, 1984). Anti-lipomodulin autoantibodies, therefore have the potential to disrapt immunoregulatory circuits through their metabolic effects

IDIOTYPES: It is unlikely that abnormalities of immunoregulatory cells can fully explain the speciate immunopathology of autolmaune diseases. Idiotypes are serologically identifiable configurations in the antigen- binding region of an antibody . The variable portions of the heavy and light chains of an antibody molecule form a cavity whose convolutions accomodate relevant antigen (Fig. i) . In view of the unique structure of the antibody variable region, it is not surprising that it is immunogenic. The rabbit auticerum was made by immunization with foreign protein and is thus a heterologous anti-idiotype . There are also autologous anti-idiotypes (auto-anti-idiotypes) . They arise during the course of a normal immune response . There is considerable evidence that idiotypes and automanti-idiotypes constitute—the B-cell component of the figure, aregulatory—network (Iden,1981) . These principles are relevant to the formation of an important class of auto-autibodies, of which the autirocept r auto-antibodies in myasthenia gravis, diabetes meliftus, and Graves disease are representatives . The anti-fillotype may stimulate the receptor by mimicking the physiologic effects of the ligand or it may block the receptor .

In a rare variant of diabetes wellitus, associated with acanthosis nigricans, there are autoantibodies to insulin receptors (Flier, 1976). It was found that mice tamunized with bovine or pork insulin produced both anti-insulin antibodies and auto-anti-idiotypes that were anti-(anti-insulin) antibodies. The anti-(anti-insulin) antibodies may be reactive with insulin receptors, and, as a result, had insulin-like activity (Schecher et al, 1982).

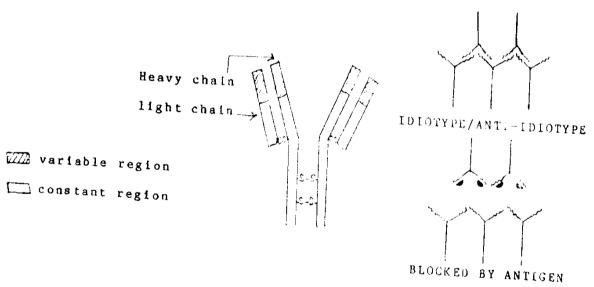


FIGURE 1. IMMUNOGLOBULIN MOLECULE (LEFT) AND BLOCKING OF IDIOTYPE-ANTIIDIOTYPE REACTION BY ANTIGEN (RIGHT)

GENETIC FACTORS :

The genetic loci of great interest in autoimmunity are associated with the major histocompatibility complex (MHC). The short arm of chromosome 6 contains the human MHC genes , which encode cell-surface polypeptides termed HLA and DR antigens . HLA (class I) antigens are functionally relevant to the cytotoxic T lymphocytes that mediate immune lysis, as in the destruction of virus- infected cells . DR (class II) antigens ,by contrast , are necessary for antigen recognition by helper lymphocytes , responsiveness or unresponsiveness to a given antigen depends on a particular assemblage of DR genes (Shaenfeld et al., 1984) . Class I and II are likely polymorphic . Each of the many alleles is designated by a number e.g. DR2 or HIA-B6 .

In several autoimmune diseases there are statistically significant associations with the DR3 antigen, the HLA-B8 antigen, or both. Other MHC antigens are also linked to particular diseases, either by over-representation or underpresentation. Type I diabetes mellitus has an association with either DR3 or DR4 or with both (Schwartz et al ,1980).

Four linked genes for the compelment components BF (factor B),C 2, C4A, and C4B (class LH antigens) lie close to the DR region of the MHC. Certain allelfc forms of these components occur frequently in some autolemune diseases.

Furthermore, polymorphic variants of the C4 gene, analogous to the DR4 genetic variants, may reveal unsuspected links between class III MHC antigens and these disorders (Whiteheed et al.,1984). Serologic methods have diaclosed that BFf1, an allelic form of BF, is eight times more frequent in patients with Type I diabetes than in the general population (Alper et al.,1982). In that disease the combination HLA-B18/DR3/BFf1 is a genetic marker Such groupings have been termed extended haplotypes (Alper et al.,1982).

A novel way relating the MHC to autoimmunization has been proposed by Hanafusa et al, 1983. They found that thyrold ${\tt epithelium}$ does not express DR antigens , but demonstrated DR antigens in patients with Graves disease. These findings explain how T lymphocytes recognize thyroid autoantigens : aberrant production of DR antigens exposes the MHC class II structures that helper lymphocytes require for antigen recognition . The thyroid epithelial cell thus becomes an antigen-presenting cell . New evidence has demonstrated that interferon induces human epithelial cells to cause the aberrant expression of DR antigens (Pober et al, 1983). In principle , therefore, a local viral infection, by eliciting the production interferon, could permit recognition of thyriod autoantigens by T cells (Bottazzo et al ,1983).

Genes that specify phenotypic markers of immunoglobulins also correlate with certain autoimmune diseases. One of these phenotypes, termed Gm, is a polymorphic serologic marker on the Fc portion of immunoglobuline. Its variants, or allotypes, are associated with Graves disease, myasthenia gravis and Type I diabetes mellitus (Nakao et al,1980). Idiotypes also provides serologic markers of antibodies. Some idiotypes are genetically determined. Recurrent idiotypes have been found in several autoantibody systemes: cold aggluinins, rheamatoid factors and anti-acetylcholine-receptor antibodies. In all cases the autoantibodies were from unrelated patients, an indication that the corresponding immunoglobuline genes were widely dispersed.

It seems , then , that certain genetic markers (DR, HLA , B F, Gm , and idiotypes) of the main elements of immune system bear on susceptibility to autoimmune diseass .

The suppressor-cell function of normal person with DR3 is impaired in vitro, and the numbers of immnuoglobulin-secretory B-cells in their circulation are increased relative to the numbers in DR3-negative subjects. The DR3 allele is also associated with an abnormality of phagocytosis by monocytes, especially when associated with certain Gm allotypes.

Another apparent genetic abnormality of Immunoregulation is the impaired function of suppressor T lymphocytes that occurs in