HYDROGEOLOGY OF SHAGAR AREA, EASTERN DESERT, RED SEA GOVERNORATE (A.R.E.)

A THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN GEOLOGY

(HYDROGEOLOGY)

LENZ LABIB ISKANDAR

To

AIN SHAMS UNIVERSITY Faculty of Science Geology Department

1986

NOTE

The present thesis is submitted by Lenz Lakik Iskandar in partial fulfillment of the requirements for the degree of Master of Science in Geology (Hydrogeology).

Beside the research work materialized in this thesis, the candidate has attended nine graduate courses for one year in the following topics:-

- Sampling
- Photogeology
- Mapping
- Igneous Petrology
- Metamorphic Petrology
- Sedimentary Petrology
- Mineralogy
- Geochemistry
- Structural Geology.

He had successfully passed the final examination of these courses. In addition, the student has successfully passed the German Language examination.

Head of Geology Department

Al Boson

Prof. Dr. Mohamed A. Bassiouni

SUPERVISING COMMITTEE

- 1. Professor Mohamed Ezzeldin Hilmy, Prof. of Economic Geology, Ain Shams Univ., Faculty of Science, Geology Department.
- 2. Dr. Ezzat Ali Korany, Assoc. Prof. of Hydrogeology, Ain Shams Univ., Faculty of Science, Geology Department.
- 3. Geologist, Mohamed El-Mandoh Negm, Geological Division Manager General Petroleum Company, Egypt.

CURRICULUM VITAE

Lenz Lalik Iskandar

Family Name : Iskandar

First Name : Lenz

Date of Birth : 12/10/1946

Nationality : Egyptian

Education: Primary, Preparatory and Secondary schools,

1951-1963.

Faculty of Science, Ain Shams University,

1963-1968. B.Sc. General Degree, Geology and

Chemistry (1968).

Present Position: Senior Master of Science, Eln Khaldone Sec-

ondary School, Helmiat El-Zeitun, Cairo.

Present Address: 12A, Arusy Street, Ain Shams, Cairo.

ACKNOWLEDGMENTS

The author is indekted to Professor M. Ezzeldin Hilmy, for his continuous support and interest during preparation of the thesis, also for reading and criticism the entire manuscript and for his valuable advice.

Gratefulness for Dr. E.A. Korany, for his supervision, valuable assistance, encouragement, and help during the stages of the development of this research.

Gratitudes to Geologist M.E. Negm, for his faithful encouragement and his sincere advice especially during writing and final revision of Chapter III. My sincere appreciation to Geologist Tawfik Morshed for his faithful help.

Thanks to Prof. Dr. M.A. Bassiouni, Head of Geology Department and Prof. Dr. H.L. Allas, the former Head of Geology Department, Ain Shams University for the use of Department's facilities. Thanks also to the Head of the Board Directors, the Manager of Ras Gharil Sector, and the Staff of the General Petroleum Company for the data offered, facilities, and faithful help especially during my stay at Ras Gharil Settlement, extended thanks to Dr. M.D.M. Salem, of Geology Department, Cairo University, and Dr. A. Youssef of Geology Department, Ain Shams University for their kind help.

My sincere appreciation to my wife for her constant encouragement.

CONTENTS

	PAGI
LIST OF FIGURES	iv
LIST OF TABLES	vi
INTRODUCTION	1
CHAPTER I:	•
CLIMATIC CONDITIONS	9
Rainfall	1 4
Evaporation and evapotranspiration	15
Moisture Balance	16
CHAPTER II:	
GEOMORPHOLOGIC FEATURES AND HYDROGRAPHIC PATTERNS	18
Geomorphologic Features	19
1. The coastal plain	21
2. The Pediment plain	23
3. The Basement Elevated Plateau	29
Hydrographic Patterns	31
1. The Northern Sub-basin	33
2. Wadi Abu Haad Sub-basin	33
3. Wadi El Darb Sub-basin	34
4. Wadi Khreim Sub-basin	35
5. Wadi Umm Yasar Sub-basin	35
6. Wadi Khurm el Uyun-Gharib Sub-basin	36
7. Wadi Dara Sub-basin	37
8. Wadi Dib Sub-basin	37
9. Wadi Abu Had Sub-basin	38
CHAPTER III :	
GEOLOGIC SETTING	47
LITHOSTRATIGRAPHY	47
I. Post Miocene Deposits	54
Recent-Pliocene Units	54
II. Miocene Rocks	54
1- Ras Malaab Group	57
a) Zeit Formation	

b) South Gharib Formation	PAGE 59
c) Belayim Formation	59
2- Gharandal Group	65
a) Kareem Formation	66
b) Rudeis Formation	67
c) Nukhul Formation	70
111. Pre Miocene Rocks	71
1- Eocene	71
2- Paleocene	72
3- Cretaceous	73
4- Paleozoic	75
5- Precambrian	76
STRUCTURE	78
raults	80
folding	83
The major structural features which are promi-	-
nant in the area	84
CHAPTER IV :	
HYDROLOGIC CONDITIONS, HYDROGEOCHEMICAL FUNCTIONS AND	
GROUNDWATER EVALUATION	
HYDROLOGIC CONTROL.	88
The Climatic Conditions	89
The Physiographic Features	89
The Geologic Setting	90
HYDROLOGIC CONDITIONS	91
The Salt Water Intrusion	93
The Proper Leaky Interrelations Between the	93
Water-bearing Layers	
The Oil Generation and Production System	93
RUDEIS AQUIFER IN SHAGAR AREA AND VICINITIES	94
Aquiter Parameters	95
HYDROGEOCHEMICAL FUNCTIONS	07
General Outline	10
Hydrogeochemical Functions and Hydrological	10
Implications	
Cations Distribution	19
1- Calcium Dictribut	19
1- Calcium Distribution 1	19

	PAGE
2- Magnesium Distribution	124
3- Sodium and Potassium Distribution	125
Anions Distribution	126
1- Chloride Distribution	126
2- Carbonate and bicarbonate Distribution	
3- Sulphate distribution	127
Remarks on the distribution of cations and	12/
anions	407
Groundwater Quality Evaluation	127
Drinking measures	132
	132
Laundary and domestic measures	138
Irrigations measures	138
Industrial Measures	139
SUMMARY AND CONCLUSIONS	140
REFERENCES	147
ARABIC SUMMARY	

LIST OF FIGURES

NC) .	PAGE
1 –	Location map	Encl
	Topographic base map	
	a-e) Climatic records for the average year of long-term	
	period (1931/83) in the western side of the Gulf of	
	Suez, Egypt	11
4 –	Types of the dominant drainage patterns in the studied	
	area	20
5 –	Geomorphologic profiles, Shagar area and vicinities	22
	Photogeologic map of Shagar area and vicinities	Encl
	Field photograph of the Great Salt Marsh in the	
	coastal plain	24
8 –	Field photograph showing the extended coastal plain.	24
	Field photograph showing the extended gravelling	
	plain	25
10-	Field photograph showing the cross-bedded clastic	
	layers overlain by friable gypsum in Shagar area	25
11-	Field photograph showing an exposed evaporite section	L
	along the drainage arteries in Shagar area	27
12-	Field photograph showing the exposed evaporite of	
	Belayim Formation in Shagar area	27
13-	Field photograph showing an exposed cross-bedded	
	sandstone overlain by limestone of Hammam Faraun	
	Member in Gharib area	28
14-	Field photograph showing the uneven surface of the	
	pediment, and the driffted sands which filled the	
	lowlying areas and valleys	28
15-	Geomorphologic and hydrographic pattern map	Encl.
16-	Field photograph showing the dispersed vegetation in	
	the dry valley (Wadi Gharib)	30
17-	Field photograph showing natural vegetated tree in	
	the the dry valley (Wadi Gharib) in the pediment	
	plain	30
18-	Infiltration capacity curve, Shagar-4	42
19-	Infiltration capacity curve, Shagar-4	44

MO.	•	
20-	- Infiltration capacity curve, Wadi Khurm el Uyun-Gharib	PAGE 46
21-	Composite lithostratigraphic section, Shagar area and	40
	surroundings	53
22-	Correlation chart of Miocene Rock Units, Shagar area.	_
23-	Correlation chart of the encountered subsurface rock	55
	units in Shagar area and vicinities	56
24-	Geologic cross-sections, Shagar area and vicinities	36
	(projected after the photogeologic map)	86
25-	Correlation chart of Rudeis Formation, Shagar area	99
26-	Structure contour map on top Gharandal sand, Shagar	99
	area	101
27-	Structure contour map on base Gharandal sand, Shagar	
	area	102
28-	Geologic cross-sections, Shagar area, Eastern Desert	103
29-	Potentiometric surface map, Rudeis aquifer, Shagar-	
	Shukheir area	105
30-	Flow net of Rudois aguifam channel a	106
31-	Na Calibration Curve	117
32-	K Calibration Curvo	118
33-	Pattern Diagram	120
34-	Collins (1923) Diagram	121
35-	Pie Diagram	
36-	Stiff (1951) Diagram	123
37-	Hydrochemical facies in the groundwater of Rudeis	
	Formation aquifer, Shagar-Shukheri area	129
38-	Dopple Logarithmic Classification of groundwater,	. = -
	Shagar-Shukheir area	130

LIST OF TABLES

NO.	PAGE
1- Meteorological records for the average year of the	FAGE
long-term period, 1931-1983, western side of the Gulf	
of Suez, Egypt	10
2- Calculated Rainfall, Evaporation and Evapotranspiration	10
for average year of the long-term period (1931/83), the	
studied area, western side of Gulf of Suez, Egypt	
3- Hydrographic network and drainage analysis of Shagar	13
area and surroundings, Eastern Desert, Egypt	32
4- Infiltration capacity test, Shagar area	41
5- Infiltration capacity test, Shagar area	43
6- Infiltration capacity test, Wadi Khurm el Uyun-Gharib.	45
7- The composite lithostratigraphic succession in Shagar	- 5
area and surroundings	48
8- Hydrologic Inventory data of Shagar Water Wells, Rudeis	
Aquiter	69
9- Encountered Rock Formations in Shagar-Shukheir area	97
10- Quantitative facies analysis of Rudei Formation Shagar	
area	98
11- Production rates of Shagar water wells	109
12- Water analysis for Shagar Water wells, GPC laboratory 1	11
13- Water analysis for Shagar water wells, by the present	
author	13
14- Water analysis for Ras Shukheir water wells. GUPCO	
records1	14
15- Calculated water analysis data for Ras Shukheir water	
wells in a epm	14
16- Calculations of chemical percents and evaluation mea-	
sures of Shagar and Shukheir groundwater	15
17- International Standards and Guide-lines for multi-	
purposes evaluation of groundwater quality	
1. Drinking water 1	33
2. Laundary water 1	33
3. Irrigation water	
A) U.S. Salinity Laboratory of the Agriculture	
Dept. (1954) 1	34

NO.	F	PAGE
	B) Anderson (1967) Classification	34 35
	D) Staybler Factor (a) Kamenesky (1947) classifi- cation	
	4. Tendency of water to dissolve or precipitate lime.	
	Ayers & Westcot (1976)	36 37

INTRODUCTION

In the western side of the Gulf of Suez, the most important oil-producing region in Egypt, a lot of exploratory wells were drilled. Brackish groundwater was detected by subsurface electric logs at several localities through the porous and permeable rock units.

In Shagar area, Fig. (1), two exploratory wells were drilled, the first was drilled by Anglo Egyptian Oil Company (AEO) in 1940 (Shagar well No. 1), and the second one was drilled by General Petroleum Company (GPC) in 1965 (Shagar well No. 2). The Rudeis sandstone in both wells is saturated with brackish groundwater.

After the short war of 1967, a great drop of potable-water supplies from Suez to the Gulf area happened. Therefore, more attention was paid to the development of the Rudeis aquifer in Shagar area by (GPC) in order to supply water demands to the settlements of Gharib and Bakr. Four other wells were drilled in Shagar area (Shagar wells, 3-6, inclusive) in 1967, 1969 and 1970, and developed for producing groundwater.

The Gulf of Suez Petroleum Company (GUPCO) shared also in the development of Shukheir area to the south of Shagar area, Fig. (1) in order to produce brackish groundwater from the Rudeis aquifer. Five wells were drilled (Shukheir wells, 1, 2, 3, 5 and 6) since 1970.