PARASITOLOGICAL AND CLINICAL STUDIES ON SCABIES

THESIS

Submitted in partial fulfillment of Master Degree in Basic Medical Science (Parasitology)

Bv

Hala Kamal Hassan El Deeb

5 mu 47 M.B., B.Ch. (Ain Shams) Demonstrator of Parasitology, Faculty of Medicine, Ain Shams University

Under supervision of

Prof. Dr. Laila Mohamed Abdel Halim El Okbi

Professor of Parasitology Faculty of Medicine, Ain Shams University

Dr. Mohamed Ahmed Abdel Rahman Sarwat

Assistant Professor of Parasitology Faculty of Medicine, Ain Shams University

Dr. Mahira Hamdy Mahmoud El Sayed

Lecturer of Dermatology and Venereology Faculty of Medicine, Ain Shams Unviersity

Parasitology Department Faculty of Medicine Ain Shams University

Cairo, 1993

TO MY BELOVED HUSBAND FOR HIS DEVOTION, SUPPORT AND GUIDANCE

HALA

ACKNOWLEDGEMENTS

I would like to express my utmost gratitude to my eminent Professor Dr. Toson A. Morsy, Professor and Head of the Parasitology Department, Faculty of Medicine, Ain Shams University, for his continuous encouragement, guidance and support.

I would like to express my deepest gratitude to Professor Dr. Laila M.A. El Okbi, Professor of Parasitology, Faculty of Medicine, Ain Shams University, for giving her time, effort, and experience to complete this work. I wish to thank her for her kind supervision, continuous encouragement, and helpful advice throughout the work.

I am particularly indebted to Dr. Mohamed A.R. Sarwat, Assistant Professor of Parasitology, Ain Shams University, for his faithful supervision, honest assistance, continuous guidance, and trustful help during this work.

I am especially grateful to Dr. Mahira H.M. El Sayed, Lecturer of Dermatology and Venereology, Faculty of Medicine, Ain Shams University, for her honest supervision, valuable advice and support during this work.

I am grateful to all my professors and colleagues at the Parasitology Department, Faculty of Medicine, Ain Shams University, for their encouragement and also for all the staff members at the Dermatology and Venereology Department, Faculty of Medicine, Ain Shams University for the facilities they offered to perform this work.

Hala Kamal Hassan El Deeb, 1993

CONTENTS

	Page
* List of Abbreviations	i
* List of Figures	ii
* List of Tables	iii
* Introduction	1
* Review of Literature	2
- Mites	2
- Scabies	16
* Aim of Work	62
* Materials and Methods	63
* Results	69
* Discussion	108
* Conclusion and Recommendations	120
* Summary	122
* References	124
* Arabic Summary	

LIST OF ABBREVIATIONS

AGN acute glomerulonephritis

AIDS Acquired Immune Deficiency Syndrome

BIT Burrow Ink Test

C Complement

CHCFs Chronic health care facilities

HLA Human leucocytic antigen

Ig Immunoglobulin

KOH Potassium hydroxide

No. Number

S.scabiei Sarcoptes scabiei

SST Skin Scraping Test

wks weeks

yr year

% Percent

≤ Less than or equal

> More than

LIST OF FIGURES

Fig. No.		Page
(1 a).	Ventral view of female S.scabiei	10
(1 b).	Dorsal view of female S. scabiei	10
(1 c).	Adult female S.scabiei extracted from burrow and	
	mounted in 30% KOH	10
(2).	Scabies egg with enclosed embryo	11
(3 a).	Ventral view of male S.scabiei	11
(3 b).	Dorsal view of male S.scabiei	11
(4).	S.scabiei larva emerging from the egg	11
(5).	Bar-chart representing age and sex distribution	
	among patients	72
(6).	Pie-diagram representing the occupational pattern	
	of the patients	76
(7).	Bar-chart showing the age and duration of infection	83
(8).	Bar-chart showing age and sex distribution among	
	preschool age children	103

LIST OF TABLES

Tab. No.		Page
(l).	Distribution of patients in various age-groups	70
(l.a).	Statistical analysis of Table (l)	70
(2).	Sex distribution among the various age-groups	72
(2.a).	Statistical analysis of Table (2)	73
(2.b).	Statistical analysis of sex distribution among the various	
	age-groups	74
(3).	Occupational pattern of all patients	76
(3.a).	Statistical analysis of Table (3)	77
(4).	Some sociodemographic data of patients	79
(5) .	Relation between duration of infection among patients	81
(5.a).	Statistical analysis of duration of infection and sex of	
	patients	81
(6).	Duration of infection among various age-groups	83
(6.a).	Statistical analysis of age and duration of infection	84
(7).	Frequency of clinical manifestations of all patients	86
(7.a).	Statistical analysis of sex of patients and clinical	
	manifestations	87
(8).	Different sites of lesions among both sexes	89
(8.a).	Statistical analysis of sex of patients and site of lesions	90
(9).	Distribution of burrows among the 40 patients who	
	demonstrated burrows	92
(9.a).	Statistical analysis of sex of patients and site of burrows	93
(10).	Results of BIT among patients with burrows	95
(l0.a).	Statistical analysis of Table (10)	95
(11).	Clinical manifestations of parasitologically positive patients	97
(ll.a).	Statistical analysis of Table (ll)	98
(12).	Different sites of burrows among parasitologically positive	
	patients	100

(l2,a),	. Statistical analysis of sex of patients and the site of burrows	
	in parasitologically positive patients	101
(13).	Age and sex distribution among preschool age children	103
(l3.a).	Statistical analysis of sex distribution among preschool age	
	children	104
(l4).	Distribution of lesions in preschool age children group	106
(l4.a).	Statistical analysis of sex of preschool age children and site	
	of lesions	107

INTRODUCTION

INTRODUCTION

Scabies is a very old contagious skin disease which is caused by the burrowing of a mite; Sarcoptes scabiei into the stratum corneum. It was mentioned in the ancient Egyptian "Papyrus" and was described by Ibnsina (Avacina) in his book "El Kanon" (Kenawi et al., 1993).

Scabies has a worldwide distribution with considerable prevalence in Egypt and it is one of the most common contagious parasitic diseases in Egypt (Morsy et al., 1993). In Egypt, scabies has been delt with by some, but not many, authors as Abo-Shady et al. (1985), Kenawi et al. (1993) and Morsy et al. (1993).

The occurrence of scabies epidemics every 15 years and the fluctuation in its incidence in various parts of the world is a real challenge to dermatologists, parasitologists, and veterinarians worldwide (Alexander, 1984).

Nowadays, scabies is considered as a serious public health problem in Egypt as claimed by Morsy et al. (1993).

REVIEW OF LITERATURE

REVIEW OF LITERATURE

MITES

Introduction

Mites belong to phylum arthropoda.

Arthropods are of medical importance because of the role they play in causing diseases either through the transmission of disease - producing agents, or the direct action through the inoculation of poison or through invading tissues. The five classes of arthropods categorized as being of medical importance are: (Gordon and Lavoipierre, 1962)

l. Chilopoda Centipedes

2. Pentastomida Tongue worms

3. Crustacea Crabs, crayfish, and copepods

4. Arachnida Spiders, scorpions, mites, and ticks

5. Hexapoda Insects

I. TAXONOMY OF MITES

Classification (Beaver et al., 1984)

Phylum Arthropoda V. Siebold and Stannius, 1845

Subphylum Chelicerata Heymons, 1901

Class Arachnida Lamarek, 1815

Subclass Acari Leach, 1817, (Ticks and Mites)

Order Parasitiformes Reuter, 1909.

Suborder Gamasida van der Hammen, 1968

Order Acariformes Zachvatkin, 1952

Suborder Actinedida van der Hammen, 1968

Suborder Acaridida van der Hammen, 1968

Order Parasitiformes Reuter, 1909:

These are forms with 1 to 4 pairs of stigmata (a pair of respiratory spiracles) posterior to the coxae of the second pair of legs. The stigmata may be associated with simple encircling plates or grooves (peritremes) of varying length and complexity.

Suborder Gamasida van der Hammen, 1968:

These are mites possessing a small, toothless hypostome; eyes lacking; tracheae present, opening above or behind third coxa; opisthosoma without annulations or ventral furrows, and body often with leathery shield. Representatives are *Ornithonyssus bacoti* and *Dermanyssus gallinae*.

Order Acariformes Zachvatkin, 1952:

Mites without visible stigmata posterior to the coxae of the second pair of legs; some forms are with simple sensilla sensory organs or optically active setae and sensory structures located on the anterior portion of the prosoma (propodosoma).

Suborder Actinedida van der Hammen, 1968:

Forms having 3 to 5 segmented palps; propodosomal sensory organs often present. Some species with paired stigmata at or near the base of the chelicerae or on the propodosoma. Representatives are *Demodex folliculorum*, *Pyemotes tritici*, *Leptotrombidium spp.*, and Cheyletiella spp.

Suborder Acaridida van der Hammen, 1968:

Forms having 2 segmented palps and no specialized sensory organs on the propodosoma. Respiration is through the integument so that there is no evidence of tracheae, stigmata, or peritremes. Representatives are Sarcoptes scabiei, Tyrophagus spp., Acarus spp., Glycyphagus spp., and Dermatophagoides spp.

So Sarcoptes scabiei (S.scabiei) mite is classified as follows:

Class Arachnida

Order Acarina

Suborder Sarcoptiformes
Cohort Acaridae

Family Sarcoptidae

Subfamily Sarcoptinae

Genus Sarcoptes

Species scabiei