

Evaluation of Fetuin-A Level and Valvular Calcification in Prevelant Hemodialysis Patients

Thesis Submitted for Partial Fulfillment of Master Degree in Internal Medicine

BY Mohamed Hussien Ghaly *M.B.B.Ch*

Under Supervision of Prof. Dr./ Essam Mohamed Khedr

Professor of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

Dr. /Ahmed Shaban Serag El Deen

Lecturer of Internal Medicine and Nephrology
Faculty of Medicine - Ain Shams University

Dr./ Mohamed Tarif Hamza

Lecturer of Clinical Pathology
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2015

- All praise are to Allah and all thanks. He has guided and enabled me by his mercy to fulfill this thesis, which I hope to be beneficial for people.
- I would like to express my deepest gratitude and sincere appreciation to **Prof. Dr. Essam Mohamed Khedr**, Professor of internal medicine and nephrology, Faculty of medicine, Ain Shams University for his encouragement, his kind support and appreciated suggestions that guided me to accomplish this work.
- I am also grateful to, **Dr.** Ahmed Shaban Serag El **Deen**, I geturer of internal medicine and nephrology Faculty of medicine, Ain Shams University, who freely gave his time, effort and experience along with continuous guidance through out this work.
- A lot of thanks are extended to Dr. Mohamed Jarif Hamza, Lecturer of clinical pathology, Jaculty of medicine, Ain Shams University for performing the laboratory measurements and fulfilling the biochemical part in this study.
- Special thanks and great appreciations to **Dr.** Abdel Wahab Mohamed Sabry, consultant of Cardiology in the National Institute of Uorolgy and Nephrology, for his great effort in performing the echocardiography for all the enrolled patients in this study.
- Finally, I would like to express my profound gratitude to **Dr. Ashraf Donia**, Head of Nephrology Department in the National Institute of Urology and Nephrology, as well as my professors and colleges in the National Institute of Urology and Nephrology for their support, advice, encourgment and help in performing this study.

Mohamed Hussien Ghaly

So Jo

My Family for their warm affection, patience, encouragement, and for always being there when I needed them

s Sa

My fiancée and the future wife Marwa for always supporting, helping and encouraging me in performing the study

سورة البقرة الآية: ٣٢

Contents

Subjects	Page
List of Abbreviations	I
List of tables	V
List of figures	VIII
Introduction	1
Aim of the Work	6
Review of literature	
- Chapter (1): Cardiovascular Risk Factor	ors in ESRD7
- Chapter (2): Vascular Calcification and	d Uremia39
- Chapter (3): Fetuin-A	78
Subjects and Methods	105
• Results	111
• Discussion	137
• Conclusion	167
Recommendations	169
• References	171
Arabic summery	

List of Abbreviations

ACE : Angiotensin convertin enzyme

ADMA : Asymmetric dymethyl arginine

AGEs : Advanced glycation end products

AHSG : α_2 -Heremans and Schmid glycoprotein

ALP : Alkaline phosphatase

AoC: Thoracic aorta calcification

APP: Acute Phase Protien

AS : Aortic stenosis

ATP III: Third Adult Treatment Panel

BBB : Blood brain barrier

BCP : Basic calcium phosphate

BMI : Body mass index

BMP : Bone morphogenetic protein

BP : Blood pressure

Ca : Calcium

CAC : Coronary artery calcification

CAD : Coronary arteryt disease

CAII : Carbonic anhydrase II

Cbfa 1 : Core binding factor a-1

CHD : Coronary heart disease

CIMT : Carotid artery intima-media thickness

CKD : Chronic kidney disease

CKD- : Chronic kidney disease–mineral bone

MBD disease

CPPs : Calciprotein particles

SList of Abbreviations &

CRF : Chronic renal failure

CRP : C-reactive protein

CT : computed tomography

CVD : Cardiovascular disease

DAMPs: Damage-associated molecular patterns

DM : Diabetes mellitus

EN- : Extracellular newly identified RAGE-

RAGE binding protein

ESRD : End stage renal disease

FGF-23: Fibroblast growth factor-23

FMC: Fetuin mineral complexes

FRS: Framingham Risk Score

GFR : Glomerular filtration rate

GLA : Glutamic acid

GLUT-1 : Glucose transporter gene-1

HA : Hydroxyapatite

HD : Hemodialysis

HDL: High density lipoprotein

HDL-C: High density lipoprotein - cholesterol

HF: : Heart failure

Hgb : Hemoglobin

HMGB1: High-mobility group box protein 1

HTN: Hypertension

IDL : Intermediate-density lipoprotein

IFN-γ : Interferon gamma

IL : Interleukin

i-PTH : Intact parathormone

EList of Abbreviations &

kD : Kilo Dalton

LDL : Low density lipoprotein

LDL-C: Low density lipoprotein- cholesterol

Lp(a: Lipoprotein a

LVH : Left ventricular hypertrophy

MAC : Mitral annular calcification

MCAo : Middle cerebral artery occlusion

MGP : Matrix Gla protein

MI : Myocardial infarction

MIA : Malnutrition, inflammation, and

atherosclerosis

MMP-9 : Metalloproteinase-9

MMPs : Metalloproteinases

NTPPPH: Nucleoside triphosphate

pyrophosphohydrlase

OPG: Osteoprotegerin

OPN: Osteopontin

PAMPs: Pathogen associated molecular patterns

PDGF: Platelet-derived growth factor

PEW: Protein energy wasting

Pit-1 : Sodium-dependent phosphate co-transporter

PO4 : Phosphorus

PP : Pyrophosphate

PTH : parathyroid hormone

PTHrP: PTH-related peptide

PTX3 : Pentraxin 3

PWV: Pulse wave velocity

SList of Abbreviations &

RANKL: Receptor activator of nuclear factor-kappa B

ligand

ROS : Reactive oxygen species

RRT : Renal replacement therapy

Runx-2: Runt-related transcription factor-2

SHP : Secondary hyperparathyroidism

SPP1 : Secreted phosphoprotein-1

sRAGE: Soluble receptor for advanced glycation end

products

STCs : Soft-tissue calcifications

STRAIL: Soluble TNF-related apoptosis-inducing

ligand

sTWEAK: Soluble TNF-like weak inducer of apoptosis

TAVI : Transcatheter aortic valve implantation

TC : Total cholesterol

TGF: Transforming growth factor

TGF-\beta1 : Transforming growth factor- β 1

tHcy : Total plasma homocysteine

TNF: Tumor necrosis factor

TRAIL: Tumor necrosis factor-related apoptosis-

inducing ligand

ucMGP : Under-carboxylated MGP

USRDS: United States Renal Data System

VEGF : Vascular endothelial growth factor

VLDL : Very-low-density lipoprotein

VSMC: Vascular smooth muscle cell

SList of Tables &

List of Tables

Table No	Title	Page
Table (1)	Estimating risk for men & women	16
	by ATP III hard CHD risk score	
	(2002).	
Table (2)	CVD Points for women by	18
	Framingham General CVD risk	
	score (2008).	
Table (3)	CVD Risk for women by	19
	Framingham General CVD risk	
	score (2008).	
Table (4)	CVD Points for men by Framingham	19
	General CVD risk score (2008).	
Table (5)	CVD Risk for men by Framingham	20
	General CVD risk score (2008).	
Table (6)	Demographic and clinical	111
	characteristics of the patients.	
Table (7)	Biochemical parameters of the	113
	patients.	
Table (8)	Pearson correlation coefficient and it	115
	statistical significance between	
	Fetuin A and selected quantitative	
	variables.	

SList of Tables&

Table No	Title	Page
Table (9)	Demographic characteristics of hemodialysis patients cross to different levels of fetuin A.	119
Table (10)	Significance of biochemical measures in hemodialysis patients according cross different levels of fetuin A.	120
Table (11)	Demographic and clinical characteristics of the studied patients according to prescence or absence of valvular calcifications.	122
Table (12)	Biochemical measures of the studied patients according to prescence or absence of valvular calcifications.	123
Table (13)	Comparison between HD cases without evidence of calcified valves, those with calcified either aorta or mitral and those with both valves calcified according to demographic and clinical characteristics.	125
Table (14)	Comparison between HD cases without evidence of calcified valves, those with calcified either aorta or mitral and those with both valves calcified according to biochemical measures.	126

■List of Tables≰

Table No	Title	Page
Table (15)	Status of calcification cross tertiles	128
	of calcification.	
Table (16)	A multiple logistic analysis with	131
	calcification of valves as a	
	dependent variable and selected	
	independent variables.	
Table (17)	Correlation of FRS 1998 (chol) with	132
	the evaluated parameters.	
Table (18)	Correlation of FRS 1998 (LDL) with	133
	the evaluated parameters.	
Table (19)	Correlation of FRS ATP III with the	134
	evaluated parameters.	
Table (20)	Correlation of FRS 2008 with the	135
	evaluated parameters.	

List of figures

Figure Number	Title	Page
Figure (1)	Epidemiology of cardiovascular	7
	disease in haemodialysis patients.	
Figure (2)	CHD score sheet for men in FRS	13
	1998.	
Figure (3)	CHD score sheet for women in	14
	FRS 1998.	
Figure (4)	Risk factors for cardiovascular	29
	disease in patients with chronic	
	kidney disease/end-stage renal	
	disease.	
Figure (5)	Diagrammatic representation of	43
	intimal and medial calcification.	
Figure (6)	Medial compared with intimal	43
	calcification.	
Figure (7)	Involvement of factors modulating	51
	vascular calcification in the	
	process of atherosclerosis via	
	inflammation.	
Figure (8)	Pathogenic mechanisms of	52
	vascular calcification.	
Figure (9)	Major mechanisms of vascular	52
	calcification.	

SList of Figures &

Figure Number	Title	Page
	Dethyrous metanticily involved in	52
Figure (10)	Pathways potentially involved in	53
	aortic valve calcific degeneration	
	associated with ESRD.	
Figure (11)	Schematic of human smooth	55
	muscle cell mineralization	
	regulated by inorganic phosphate	
	ion mediated by sodium-dependent	
	phosphate co-transprter (Pit-1).	
Figure (12)	Pit-1 is found to be upregulated by	56
	certain inducers such as calcium,	
	BMP-2 and PDGF.	
Figure (13)	Effects of calcium and phosphate	57
	on VSMC mineralization.	
Figure (14)	Proposed role of elevated	57
	phosphate (Pi) in	
	osteochondrogenic phenotype	
	change and matrix mineralization	
	in vascular SMC.	
Figure (15)	Echocardiogram of the heart in the	72
	parasternal long-axis view. This	
	image shows a densely calcified	
	aortic valve, with the crosses	
	indicating the hinge points of the	
	valve in the cardiac skeleton.	
	varve in the Carthac Skeleton.	
	, al , o in the cardiac sixercion.	

SList of Figures &

Figure		
Number	Title	Page
	Protein structure and	80
Figure (16)		80
	posttranslational modification of	
	fetuin-A.	
Figure (17)	Inhibitory effect of fetuin-A on	85
	insulin receptor (IR) by direct	
	noncompetitive interaction with	
	IR.	
Figure (18)	Mechanism of inhibition of ectopic	88
	calcification by fetuin-A.	
Figure (19)	Protective roles of fetuin-A in	101
	ischemic injury and sepsis.	
Figure (20)	Comparison of serum fetuin-A	114
	levels (µg/ml) in the group of	
	hemodialysis patients and the	
	group of healthy subjects.	
Figure (21)	Correlation between fetuin-A and	117
	age in HD patients.	
Figure (22)	Correlation of serum fetuin-A	117
	levels (µg/ml) with serum albumin	
	(g/dl) in the HD group.	
Figure (23)	Relationship of serum fetuin-A	118
	levels (µg/ml) with serum hsCRP	
	mg/dl) in the HD group.	