PREDUCTAL AND POSTDUCTAL TRANSCUTANEOUS OXYGEN SATURATION MEASUREMENTS IN PRETERM NEWBORNS WITH HYALINE MEMBRANE DISEASE

Thesis

Submitted for the Partial Fulfillment of the Master Degree in Pediatrics

By

Alaa Aldin Hassan Mohamed Tawfik

618.9201 A. H

M. B., B. CH.

Supervised by

Dr. Magid Ashraf Abdel Fattah Ibrahim

Ass. Professor of Pediatrics
Ain Shams University

Dr. Tarek Ahmed Abdel Gawad

4.255

Lecturer of Pediatrics Ain Shams University

Ain Shams University
Faculty of Medicine
1994

وقال كلا إلى محي ربي سيهدين الشعراء - آية ٦٢]

TO MY PARENTS

Who gave everything and took nothing

ACKNOWLEDDMENTS

First of all, I thank God to whom I relate any success in achieving any work in my life.

Magid Ashraf A.F. Ibrahim, Ass. Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for supervising this work and for sparing so much time in revising every single word of this work. I am actually indebted to his generous encouragement, continuous support, and kind interest.

I wish to express my sincere gratitude and appreciation to Dr. *Tarek Ahmed Abdel Gawad*, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for his kind observations and valuable advice throughout this work. His useful suggestions and wise systemic approach left their prints on the work.

Alaa Aldin Hassan

CONTENTS

	Page
INTRODUCTION AND AIM OF THE STUDY	1
REVIEW OF LITERATURE	3
CHAPTER (1) OXYGEN THERAPY AND TOXICITY	3
Introduction	3
Oxyhemoglobin Dissociation Curve	6
Alveolar oxygen tension	6
Pulmonary gas exchange	8
Diffusion defects	8
Ventilation perfusion mismatch	9
Right-to-left shunt	9
Increased alveolar dead space	9
Venous oxygen tension	9
Pulmonary Indices	11
Indications of Oxygen Therapy	11
Methods of Oxygen Administration	12
Dosage of Oxygen	14
Duration of Oxygen Therapy	14
Oxygen Toxicity	15
Oxygen Therapy Monitoring	17
Invasive monitoring (Blood gas analysis)	17
Methods of sampling	17
Method of measurement	17
Disadvantages	18
Non-invasive monitoring	18
Transcutaneous oxygen tension	18
Transcutaneous oxygen saturation	20

	Page
CHAPTER (2) PATENT DUCTUS ARTERIOUS IN	
PRETERM INFANTS	23
Antomy and Histology	23
Function of Ductus Arteriosus	24
Mechanical Events of Closure of the Ductus Arteriosus	25
Humoral Factors Affecting Ductal Closure	26
Exogenous Factors That Affect Ductal Closure	28
Transitional Circulation	28
Hemodynamics	33
Etiology and Incidence	37
Clinical Presentation of PDA in Preterm Infants	39
Diagnosis	41
Treatment	42
General concideration (Fluid restriction,	
Diuretics, Digoxin,)	44
Surgical closure of PDA	44
Indomethacin	45
Dosage	46
Timing	47
Contraindication	50
CHAPTER (3) SURFACTANT	50
Function	50
Synthesis	51
Composition	53
Packaging, Transport, Secretion and Reutilization	54
Surfactant Development	54
Control of Synthesis	55
Control of Secretion	55 55

	Page
CHAPTER (4) HYALINE MEMBRANE DISEASE	57
Etiology	57
Pathology	58
Pathophysiology	59
Clinical Picture	60
Laboratory Diagnosis	63
Radiographic Diagnosis	63
Prevention	64
Treatment	67
Oxygen administration	68
Surfactant prophylaxis and replacement	69
Mechanical ventilation	72
Closure of PAD	. 75
SUBJECTS AND METHODS	76
RESULTS	79
DISCUSSION	108
CONCLUSION	118
RECOMMENDATIONS	119
ENGLISH SUMMARY	121
REFERENCES	124
ARABIC SUMMARY	145

LIST OF TABLES

		Page
Table (1):	Effect of oxygemoglobin dissociation curve on oxygen	
	saturation	21
Table (2):	Major factors affecting pulmonary vascular resistance	32
Table (3):	Percentage of infants with hemodynamically significant	
	PDA	38
Table (4):	Dose of intravenous indomethacin in premature infant	
	with PDA	45
Table (5):	Contraindication of indomethacin in infants with PDA	49
Table (6):	Composition of surfactant	51
Table (7):	Clinical scoring system for infants with HMD	60
Table (8):	HMD severity scoring system on radiographs	64
Table (9):	Incidence of HMD at different L / S ratio	65
Table (10):	Surfactant Prepartions	70
Table (11):	Clinical data of newborns under study	80
Table (12):	Radiological and laboratory data of newbors under study	81
Table (13):	Mean values of clinical data of newborns under study	83
Table (14):	Mean values of the parameters of right-to-left shunting	
	episodes of newborns under study	83
Table (15):	Statistical comparison between either sexes and the	
	parameters of right-to-left shunting episodes	84
Table (16):	Correlation between GA and parameters of right-to-left	
	shunting epidodes	85

	Page
Table (17): Statistical comparison between either mode of delivery	
and the parameters of right-to-left shunting episodes	86
Table (18): Correlation between birth weight and parameters of	
right-to-left shunting episodes	87
Table (19): Correlation between Apgar score and parameters of	
right-to-left shunting episodes	88
Table (20): Correlation between Silverman score and parameters of	
right-to-left shunting episodes	89
Table (21): Statistical comparison between infants presented without	
cyanosis and the parameters of right-to-left shunting	
episodes.	90
Table (22): Correlation between radiological score and parameters of	
right-to-left shunting	91
Table (23): Relation between pH and parameters of right-to-left	
shunting episodes.	92
Table (24): Relation between PO ₂ and parameters of right-to-left	
shunting episodes	93
Table (25): Relation between methods of oxygen administration and	
parameters of right-to-left shunting episodes	94

LIST OF FIGURES

		Page
Fig (1):	The oxygen affinity and oxygen delivery of blood from	
	term infants at birth and at different postnatal ages	4
Fig (2):	The partial pressure of inspired and alveolar gas	7
Fig (3):	The carbon dioxide dissociation curve	8
Fig (4):	Relationships between ventilation and perfusion	10
Fig (5):	The fetal circulation	24
Fig (6):	Hemodynamics of the cardiorespiratory conversion in the	
	newborn	29
Fig (7):	The synthesis of surfactant phosphatidylcholine by the	
	choline incorporation pathway	52
Fig (8):	The synthesis of surfactant phosphatidylglycerol and	
	phosphatidylinositol	52
Fig (9):	Illustration of surfactant metabolism	56
Fig (10):	Silverman score	61
Fig (11):	Relations between sex, mode of delivery, presentation, pH,	
	PO ₂ and method of O ₂ administration and number of	
	episodes	95
Fig (12):	Relations between sex, mode of delivery, presentation,	
	pH, PO2 and method of O2 administration and magnitude	
	of the episodes	96
Fig (13):	Relations between sex, mode of delivery, presentation,	
	pH, PO ₂ and method of O ₂ administration and duration of	
	the episodes	97

		Page
Fig (14):	Relations between sex, mode of delivery, presentation,	
	pH, PO2 and method of O2 administration and time of last	
	episode	98
Fig (15):	Correlation between gestational age and no. of episodes	99
Fig (16):	Correlation between gestational age and time of last	
	episode.	100
Fig (17):	Correlation between weight and no. of episodes	101
Fig (18):	Correlation between weight and magnitude of episodes.	102
Fig (19):	Correlation between weight and time of last episode	103
Fig (20):	Correlation between Silverman score and no. of episodes	104
Fig (21):	Correlation between Silverman score and magnitude of	
	episodes	105
Table (22):	Correlation between Silverman score and duration of	
	episodes	106
Fig (23)	Correlation between Silverman score and time of last	
	episode	107

LIST OF ABBREVIATIONS

CPAP Continuous positive airway pressure

DA Ductus arteriousus

2,3- DPG Diphosphoglycerate

ECMO Extracorporeal membrane oxygenation

ETT Endotracheal tube

FiO₂ Fraction of inspired oxygen

Hb Hemoglobin

Hb A Adult hemoglobin

Hb F Fetal hemoglobinbn

HMD Hyaline membrane disease

IPPV Intermittent positive pressure ventilation

KPa Kilopascal

L/S Lecith/ sphingomyelin

NEC Necrotizing enterocolitis

PaO₂ Arterial oxygen tension

PAO₂ Alveolar oxygen tension

PA-aO₂ Difference between alveolar and arterial oxygen tension

PACO₂ Alveolar corbon dioxide tension

PAP Pulmonary artery pressure

PCO₂ Carbon dioxide tension

PDA Patent ductus arteriosus

PEEP Positive end expiratory pressure

PiO₂ Inspired oxygen tension

PO₂ Oxygen tension

PPHN Presistent pulmonary hypertension of the newborn

Pt c O₂ Transcutaneous oxygen tension

Pv O₂ Mixed venous oxygen tension

RDS Respiratory distress syndrome

ROP Retinopathy of prematurity

SO₂ Oxygen saturation

SP Surfactant protein

St c O₂ Transcutaneous oxygen saturation

VSD Ventricular septal defect

Introduction and Aim of the Work