The Value of Leukocyte Esterase in the Prediction of Amniotic Fluid Culture Results in Preterm Premature Rupture of Membranes

A Thesis Submitted in Partial Fulfillment of Master Degree in Obstetrics and Gynecology

Presented By

Khaled Mostafa Kamel Ismail

M.B.B.Ch

49375

Supervised By

Prof. Dr. Khalil Ismail El Lamie

Professor and Chairman of Obstetrics and Gynecology Department Ain Shams University

Dr. Mohamed Alaa Mohy El Din El Ghannam

Lecturer of Obstetrics and Gynecology Ain Shams University

> Cairo 1994

The Value of Leukocyte Esterase in the Prediction of Amniotic Fluid Culture Results in Preterm Premature Rupture of Membranes

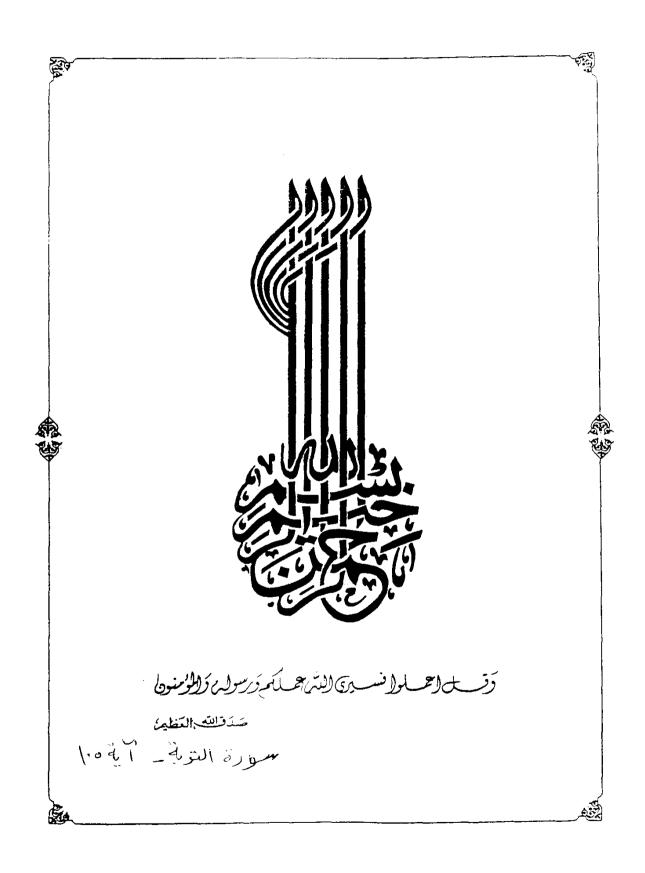
A Thesis Submitted in Partial Fulfillment of Master Degree in Obstetrics and Gynecology

Presented By

Khaled Mostafa Kamel Ismail

M.B.B.Ch

Supervised By


Prof. Dr. Khalil Ismail El Lamie

Professor and Chairman of Obstetrics and Gynecology Department Ain Shams University

Dr. Mohamed Alaa Mohy El Din El Ghannaka

Lecturer of Obstetrics and Gynecology Ain Shams University

Cairo 1994

TO MY PARENTS
MY WIFE

AND

MY SON

ACKNOWLEDGMENT

First of all, thanks to God.

I wish to express my thanks and gratitude to Prof. Dr. Khalil Ismail El Lamie, Professor and Chairman of Obstetrics and Gynecology Department, Ain Shams University, for his guidance, his time, encouragement and enthusiastic support as well as his fatherly attitude without which this work would not have been possible.

I am profoundly grateful to Dr. Mohamed Alaa Mohy El Din El Ghannam, Lecturer of Obstetrics and Gynecology, Ain Shams University, for his constructive criticism, valuable comments and kind advice.

I feel indebted to Prof. Dr. Ibrahim Abu Senna, Professor of Obstetrics and Gynecology Department, Ain Shams University, and Chairman of the Ultrasound and Fetus Care Unit, Dr. Amira Saleh, Director of the Medical Services of the Ultrasound and Fetus Care Unit and Dr. Isha Mamdouh Hafez, Assistant Professor of Microbiology, Ain Shams University for helping me sincerely in the practical part of this work.

I would also like to express my appreciation to Dr. Mary Girgis for giving a highly valuable hand in typing and printing this work in its present form.

Last but not least, words fail to express my deepest gratitude to the members of my family; my father, mother and my wife for their support and understanding.

CONTENTS

•	Introduction	1
•	Aim of the work	4
•	Review	
•	Development, anatomy and histology	
	of the fetal membranes	5
•	Epidemiology of premature rupture of	
	membranes	9
•	Mechanisms of premature rupture of	
	membranes	19
•	Detection of premature rupture of	
	membranes	28
•	Approach to the patient with query	
	premature rupture of membranes	42
•	Management of preterm premature	
	rupture of membranes	44
•	Role of corticosteroids in the man-	
	agement of patients with preterm	
	premature rupture of membranes	63
•	Antibiotic therapy in preterm	
	premature rupture of membranes	67
•	Use of tocolytics in patients with	
	preterm premature rupture of	
	membranes	74
•	Complications of preterm pre-	
	mature rupture of membranes	82
•	Leukocyte esterase assay	92

•	Patients and methods	94
•	Results	101
•	Discussion	107
•	Summary and Conclusion	112
•	References	114
•	Arabic summary	

LIST OF FIGURES

Fig.		Page
1	Amniotic epithelium	5
2	Surface microvilli of amniotic cells	5
3	Desmosomes between amniotic cells	6
4	Electron microscopy of collagen	
	bundles in amniotic stroma	6
5	Oligohydramnios sequence	86
6	Cambur "9" test strip	96
7&8	Mycoplasma kits	98
9	Percentage of occurrence of each	
	organism in positive cultures	102
10	Comparison between sensitivity,	
	specificity, positive and negative	
	predictive values of leukocyte	
	esterase activity for detection of	
	amniotic fluid cultures	103
11	Comparison between sensitivity,	
	specificity, positive and negative	
	predictive values of leukocyte	
	esterase activity for the detection	
	of Mycoplasma infection	104
12	Comparison between sensitivity,	
	specificity, positive and negative	
	predictive values of leukocyte	
	esterase activity for the detection	
	of aerobic and anaerobic cultures	105

13 Comparison between sensitivity, specificity, positive and negative predictive values of leukocyte esterase activity for the detection of amniotic fluid cultures, *Mycoplasma* culture alone and aerobic and anaerobic cultures

106

LIST OF TABLES

Table		Page
1	Differentiation of vernix caseosa	_
	cells from hypercornified vaginal	
	epithelia	31
2	Color changes of nitrazine paper	35
3	Results of the study	101
4	Different microorganisms detected	
	in amniotic fluid cultures with the	
	percentage of occurrence of each	102
5	Sensitivity, specificity, positive	
	and negative predictive values	
	of leukocyte esterase activity in	
	the prediction of amniotic fluid	
	culture results	103
6	Sensitivity, specificity, positive	
	and negative predictive values	
	of leukocyte esterase activity in	
	the detection of Mycoplasma	
	infection	104
7	Sensitivity, specificity, positive	
	and negative predictive values	
	of leukocyte esterase activity in	
	the detection of aerobic and	
	anaerobic organisms	105
8	Comparison between this study	
	and other similar studies	111

INTRODUCTION

INTRODUCTION

Premature rupture of the membranes (PROM) is a significant obstetric problem. It is responsible for approximately 30% of all preterm deliveries (Arias and Temich, 1982), and causes important maternal morbidity. Unfortunately, advances in the understanding of the etiology, pathogenesis, management and prevention of PROM have been relatively few.

From the clinician's point of view, preterm premature rupture of membranes is a clinical dilemma because the dangers of preterm delivery must be weighed against the risk of maternal and fetal or neonatal sepsis. Also because complications of prematurity rather than sepsis are the main sources of perinatal morbidity and mortality, as well as the general agreement that prompt delivery is indicated if these patients have clinical amnionitis, conservation and screening for early detection of infection is the best management to improve the perinatal outcome (Vintzileos et al., 1991).

In diagnosing PROM, the history and physical examination alone are often inadequate to confirm the status of the membranes. Fluid may not be present in the vagina for evaluation. Furthermore, at times, fluid may be contaminated with urine, cervical mucus, bath water, vaginal discharge, blood, or meconium. Because of these difficulties, multiple cytological, biochemical, colorimetric and sonographic methods have been developed for the detection of

ruptured membranes. Despite significant advances in technology, no one test has been found to be completely accurate and diagnosis still requires an integration of historic factors, physical examination and laboratory testing.

To assess the microbial state of the amniotic fluid cavity accurately, the method of amniotic fluid collection is critical. The two methods generally used are transabdominal amniocentesis, and transcervical retrieval. The latter is associated with an unacceptable risk of contamination with the vaginal flora, so not useful when analyzing the prevalence of microbial invasion of the amniotic cavity in cases of PROM. Recent data have also shown a success rate in amniocentesis with PROM reaching up to 92-96% compared to the 45-70% success rate previously (Vintzileos et al., 1986; Goldstein et al., 1988).

Several investigators used amniocentesis in the detection of microbial invasion of the amniotic fluid in PROM. For example, the use of amniotic fluid cultures and gram staining, amniotic fluid leukocytic count and glucose level, detection of bacterial endotoxins, leuko-attractants as well as leukocyte esterase activity (Garite et al., 1979).

Although amniotic fluid cultures are very sensitive, especially when we compare maternal and neonatal infectious complications in PROM in patients with positive and those with negative culture results, it is tedious, time consuming and the patient may even pass into premature