STUDY OF ENVIRONMENTAL EFFECTS OF FUNGICIDES USED FOR CONTROLLING SOIL BORNE DISEASES OF SOME VEGETABLE CROPS UNDER PROTECTED AGRICULTURE

NADIA AWAD SHENOUDY AWAD

632.2. N.A.

B. Sc (Cairo University)

م السبعيل ميكرو نيلمبا : م السبعيل ميكرو نيلمبا : التوثيق اليكرونيل

A thesis submitted in partial fulfilment

of

the requirements for the degree of

64171

MASTER OF SCIENCE

in

Environmental Sciences

Department of Agricultural Sciences
Institute of Environmental Studies and Research
Ain Shams University

1996

APPROVAL SHEET

STUDY OF ENVIRONMENTAL EFFECTS OF FUNGICIDES USED FOR CONTROLLING SOIL BORNE DISEASES OF SOME VEGETABLE CROPS UNDER PROTECTED AGRICULTURE

Βy

NADIA AWAD SHENOUDY AWAD

B. Sc (Cairo University) 1977

This thesis for M.Sc. degree has been approved by:

Prof. Dr. Hosni Abdel Rahman Mohamed Heard of Makemed Research Professor Plant Pathology Research Institute, ARC Giza.

Prof. Dr. Zidan Hindy Abdel-Hamid

Professor of Pesticides, Chemistry and Toxicology

Head of Plant Protection Dept., Ain Shams University.

Prof. Dr. Ibrahim Sadek Elewa

Professor of Plant Pathology, Faculty of Agriculture,
Ain Shams University.

Date of examination: 29 / 7 / 1996

STUDY OF ENVIRONMENTAL EFFECTS OF FUNGICIDES USED FOR CONTROLLING SOIL BORNE DISEASES OF SOME VEGETABLE CROPS UNDER PROTECTED AGRICULTURE

Ву

NADIA AWAD SHENOUDY AWAD

Prof. Dr. Wally El Din Abdel Kader Ashour
Professor of Plant Pathology, Plant Pathology Dept. Faculty of Agriculture, Ain Shams University.

Prof. Dr. Ibrahim Sadek Elewa
Professor of Plant Pathology, Plant Pathology Dept.
Faculty of Agriculture, Ain Shams University.

ACKNOWLEDGMENT

The author wishes to express deepest gratitude to Prof. Dr. W.A. Ashour and Prof. Dr. M.M. El-Zayat, Professors of Plant Pathology, Faculty of Agriculture, Ain Shams University, for suggesting the problem, his close supervision of the work, his useful criticism and careful revision of the work.

She sincerely expresses thankfulness and appreciation to Prof. Dr. I.S. Flewa, Professor of Plant Pathology of the same Department, for his gracious help, valuable supervision, continuous encouragement during the course of this investigation.

Many thanks are also due to Dr. S.I. Shehata, lecturer of Plant Pathology Faculty of Agriculture, Ain Shams, University for his great help during the research course and careful revision of the thesis.

She wishes to express her deep appreciation to Prof. Dr. M.S.H. Moustafa, head of fungicides Research, Plant Pathology Institute, Agricultural Research Center for his useful guidance, help throughout the course of investigation, providing facilities for the present study.

Many thanks are also due to Dr. Ebtisam M. El-Sherif, head of Mycol. Research Dept., Plant Pathology Institute, ARC., for her help in the Identification of fungi.

I would like to express thanks to all the staff members of Fungicides Research Department, Plant Pathology Institute, ARC, for kind help and valuable assistance during the experimental work.

I never forget the kind help and the patience of my husband Dr. F.S. Khalil, Researcher of poultry Nutrition, Animal Production Institute, Agriculture Research Center, for unlimited help, carry out Statistical Analysis and his valuable advice.

ABSTRACT

The present work was planned to study the effect of fungicides for controlling soil borne diseases as compared with soil mulching as physical process. The effect of such treatments on plant growth as well as the soil microflora was also concerned.

The most frequently isolated fungi from diseased tomato and pepper plants were Fusarium oxysporum and Rhizoctonia solani.

Rizolex and Rizolex T were the most effective fungicides on the mycelial linear growth of *R. solani*, while benlate was the most effective on linear growth of *F. oxysporum* f. sp. *lycopersici* and *F. annuum*.

In greenhouse, seed treatment with Rizolex T was the most effective in decreasing the pre-emergence damping-off and increasing the survival plants. Meanwhile, root length and root dry weight and shoot length, shoot dry weight were increased at different fungicidal applications in both tomato and pepper.

Benlate showed the highest efficiency in reducing the severity of tomato and pepper *Fusarium* wilt and also in increasing the root, shoot length and root, shoot dry weight and increasing number of leaves. However, the most phytotoxic fungicide was Vitavax thiram on yellowing or burning of leaves of tomato and pepper plants. Chlorophyll was decreased as result of fungicides treatment to detached leaves at higher doses. However, the higher applications to soil decreased root, shoot length and root, shoot dry weight of both hosts. Such treatments also decreased the total number of fungi, bacteria, actinomycetes and azotobacter in soil.

On the other hand, highest percentage of seed germination was obtained with rizolex T and benlate in seeds of tomato and pepper.

Covering the soil with plastic sheets for 30 days significantly decreased the percentage of post emergence damping-off of tomato and pepper and also decreased the number of total fungi, bacteria and actinomycetes. Such treatment raised the minimum and maximum soil temperatures over the uncovered soil.

TABLE OF CONTENTS

1. Introduction	PAGE
1. Introduction	1
2. Review of Literature	2
. Soil borne diseases and causal fungi	2
. Effect of fungicides on pathogenic fungi associated with root	
rot and wilt diseases	4
. Effect of fungicidal treatments on mycelial growth of the	
fungal pathogens in laboratory	4
. Effect of fungicides on pathogenic fungi in greenhouse	6
. Effect of fungicides on plant growth and on chlorophyll	
content	13
. Effect of fungicides on soil microflora	16
A. Fungi	16
B. Bacteria	18
C. Azotobacter	19
D. Actinomycetes	20
. Effect of solar energy on diseases incidence, soil temperature	20
and soil microflora	20
3. Material and Methods	28
Isolation and identification of the causal organisms	28
2. Pathogenicity test	
Effect of fungicidal treatments on mycelial growth of the	28
fungal pathogens in laboratory	20
4. Screening of some fungicides against damping-off and wilt	30
diseases on tomato and pepper in greenhouse	20
5. Side effect of some fungicides on tomato and pepper plants	32
under experimental green house conditions	
6. Effect of fungicides on the host plant and soil microflora	33
- West plant and soil inicroffora	34

	PAGE
7. Effect of solar energy on diseases incidence, soil temperature	
and soil microflora	37
4. Results	39
1 Isolation and identification of the causal organisms	39
2. Pathogenicity test	41
3. Effect of fungicidal treatments on mycelial growth of the	
fungal pathogens in laboratory	41
a. Rhizoctonia solani	41
b. Fusarium oxysporum f.sp. lycopersici	45
c. Fusarium annuum	45
Screening of some fungicides against damping-off and wilt	
diseases of tomato and pepper in greenhourse	50
4.1. The influence of fungicidal seed treatments of tomato on	
damping-off, root and shoot growth in soil infested with	
R. solani	50
4.2. The influence of fungicidal seed treatments of pepper on	
damping-off, root and shoot growth in soil infested with	
R. solani	53
4.3. The influence of dipping tomato seedlings in fungicides on	
wilt severity, root and shoot growth in soil infested with	
Fusarium oxysporum f.sp. lycopersici	57
4.4. The influence of dipping pepper seedlings in fungicides on	
wilt severity, root and shoot growth in soil infested with	
Fusarium annuum	59
Side effect of some fungicides on tomato and pepper plants	
under greenhouse condition	65
5.1. Root length and dry weight of tomato plants	. 65
5.2. Shoot length and dry weight of tomato plants	. 79
5.3. Root length and dry weight of pepper plants	. 68
5.4. Shoot length and dry weight of pepper plants	. 70

	PAG
5.5. Yellowing of tomato and pepper plants	70
5.6. Effect of fungicides on tomato seed germination	82
5.7. Effect of fungicides on pepper seed germination	86
5.8. Effect of fungicides on chlorophyll content of tomato and	
pepper plants	72
Effect of fungicides on the host plant and soil microflora	
under productive greenhouse conditions	75
6.1. Effect on tomato plants	75
6.2. Effect on pepper plants	77
6.3. Effect of fungicides on soil microflora with tomato	• • •
plants	77
6.3. A. Soil drench	87
A.I. Total number of fungi (TNF)	87
A.II. Total number of bacteria (TNB)	87
A. III. Total number of actinomycetes (TNA)	87
6.3. B. Dipping-of seedlings	88
B. I. Total number of fungi (TNF)	88
B. II. Total number of bacteria (TNB)	88
B. III. Total number of actinomycetes(TNA)	88
6.4. The effect of fungicides on soil microflora with pepper	00
plants	89
6.4. A. Soil drench	89
A. I. Total number of fungi (TNF)	89
A. II. Total number of bacteria (TNB)	89
A. III. Total number of actinomycetes (TNA)	
B. Seedlings dipping	100
B. I. Total number of fungi (TNF)	100
B. II. Total number of bacteria (TNB)	100
B. III. Total number of actinomycetes (TNA)	100

	PAGE
6.5. Effect of different fungicides used as soil drench or as	
seedling dip on the count of azotobacter in soil cultivated	
with pepper	101
7. Solar energy	105
7.1. Effect of solarization on the percentage of post emergence	
damping-off of tomato and pepper caused by F. oxysporum	
and Rhizoctonia solani	105
7.2. Effect of solarization on soil-microflora	105
7.3. Effect of solarization on soil temperature	108
5. Discussion	110
6. Summary and conclusion	115
	119
7. References	
8 Arabic summary	