Prevalence of Extrapyramidal Signs in Patients with Chronic liver disease in a Tertiary Hepatology Center

Thesis

Submitted for Partial Fulfillment of the Master Degree in Neuropsychiatry

By
Saeed Abdelhamid Hashem Hashem
MBBCh, Ain Shams University

Under Supervision of

Prof. Samia Ashour Mohamed Helal

Professor of Neurology Faculty of Medicine - Ain Shams University

Prof. Ahmed Abdelmonem Gaber Mohamed

Professor of Neurology Faculty of Medicine - Ain Shams University

Prof. Osama Aboulfotouh El-Sayed

Professor of Hepatology & Gastroenterology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University Cairo, 2015

بِنِيْ اللَّهُ اللَّاللَّا اللَّهُ الللَّهُ اللَّهُ ال

وقُلِ اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُمْ ورَسُولُهُ وَقُلِ اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُمْ ورَسُولُهُ والْمُؤْمِنُونَ

صدق الله العظيم سورة التوبة آية (105)

First, I wish to express my deep thanks, sincere gratitude to **Allah**, who always helps me, cares for me and granted me the ability to accomplish this thesis.

I would like to express my deepest gratitude, thanks and gratefulness to **Prof. Samia Ashour Mohamed Helal**, Professor of Neurology, Ain Shams University, for her enthusiastic support, continuous encouragement valuable scientific advices, and great help through out of the accomplishment of this work.

I am very grateful to **Prof. Ahmed Abdelmonem Gaber Mohamed**, Professor of Neurology, Ain Shams University, for his kind and thorough supervision, support, indispensable suggestion, hands-on guidance and great help throughout the course of my thesis.

I would like to share my sincere thanks to **Prof. Osama Aboulfotouh El-Sayed**, Professor of Hepatology and Gastroenterology, Ain Shams University, for his kind and meticulous supervision, support, help and valuable advice.

My thanks also go to all my Professors of Neuropsychiatry department, Faculty of Medicine, Ain Shams University.

No words can express my genuine gratitude and deep appreciation to my warm & kind family for their unconditional encouragement and support.

I would like to express my over lasting gratitude to all my dear friends and colleagues all who offered me tremendous help and advice wishing them the best of all.

I would like also to thank the patients who agreed willingly to be part of my study and without them I wouldn't have been able to accomplish this work.

I can never forget how much I owe my lovely wife **Dr. Hagar** for what she has done to me. Words cannot describe how lucky I am to have her in my life. She has selflessly given more to me than I ever could have asked for. I love you, and look forward to our lifelong journey.

Saeed A. Hashem

LIST OF CONTENTS

	Page No.
List of Abbreviations	
List of Figures	3
List of Tables	5
Introduction	7
Aim of the Work	10
Review of Literature	11
Anatomy & Physiology	11
Liver Cirrhosis	29
Neurological complications of chronic liver disease	47
Hepatic Encephalopathy	55
Hepatocerebral degeneration	63
Subjects and Methods	73
Results	78
Discussion	101
Limitations	112
Summary	113
Conclusion	117
Recommendations	118
References	119
Appendix	127
Arabic Summary	

LIST OF ABBREVIATIONS

A1 1 1 (', ' 1 C' '
Alpha 1-antitrypsin deficiency
Activities of daily living
Acquired hepatocerebral degeneration
Alcoholic liver disease
Alanine transaminase
Anti-nuclear antibody
Analysis of Variance
Aspartate transaminase
British anti-Lewisite
Fahn-Marsden scale
Basal ganglia
Chronic hepatic encephalopathy
Chronic liver disease
Chronic obstructive pulmonary disease
Computed Topography
Deoxyribo-nucleic acid
Endoscopic retrograde cholangiopancreatography
Elective sclerotherapy
Electroencephalogram
Gamma-amino butyric acid
Globus pallidus externa
Globus pallidus interna
Hepatitis B virus
Hepatitis C virus

HE	Hepatic encephalopathy
INR	International normalized ratio
IVC	Inferior vena cava
MELD	Model for End-Stage Liver Disease score
MPTP	methyl-4-phenyl-1,2,3,6 tetrahydropyridine
MRCP	Magnetic resonance cholangiopancreatography
MRI	Magnetic resonance imaging
NASH	Non-alcoholic steatohepatitis
PBC	Primary biliary cirrhosis
PD	Parkinson disease
PSC	Primary sclerosing cholangitis
PSE	Porto-systemic encephalopathy
RNA	Ribo-nucleic acid
SD	Standard deviation
SMA	Supplementary motor area
SNpr	Substantia nigra pars reticulate
SPSS	Statistical Package for Social Sciences
STN	Subthalamic nucleus
TGF-β ₁	Tumor growth factor
UPDRS	Unified Parkinson Disease Rating Scale
VTA	Ventral tegmental area
WD	Wilson disease
TIPSS	Transjugular intrahepatic portosystemic stent shunting

List of Figures

Figure	Title	Page
1	Simplified BG circuits	12
2	Components of the limbic circuit	14
3	Basal ganglia-thalamocortical "motor circuit"	16
4	Projections to pyramidal neurons	17
5	Diagram of anatomical relationships between cerebellar and basal ganglia efferents and motor and premotor cortical areas	18
6	Topographic organization of BG	19
7	Schematic representation of a medium-sized spiny neuron (MSN) in the striatum	20
8	Schematic representation of the organization of basal ganglia-thalamocortical circuits	22
9	Lobes of the liver	24
10	Arterial vasculature of liver	25
11	Portal vein formation	26
12	Intrahepatic vascular and biliary anatomy, posterior view	27
13	Liver biopsy showing cirrhosis	37
14	CT abdomen showing hepatomegaly	40
15	Liver autopsy macronodular cirrhosis	42
16	Multiple MRI Brain axial cuts	50
17	Brain MRI Sagittal T1-weighted images	50
18	T1 weighted MRI of a patient admitted for Child's grade C cirrhosis after alcohol abuse for liver transplantation	52
19	Grading of HE	57
20	Hypomimia seen in WD	65
21	Dystonia in WD	65
22	Diagnosis of WD	66
23	Brain MRI—typical picture of HE in 40 years old WD male	67

24	The brain MRI of a 30-years women with advanced neurological form of WD	68
25	The brain MRI of a 21-years WD patient	68
26	Pie Chart presentation of gender distribution among the studied sample	78
27	Distribution of age in years among the sample	79
28	Distribution of age at onset in years among the studied sample	80
29	Distribution of duration of chronic liver disease in years among the studied sample	80
30	Distribution of causes of chronic liver disease among the studied sample	81
31	Pie chart presentation showing portal vein diameter among the studied sample	82
32	Pie chart representation of the presence of parkinsonian features among the sample	84
33	Linear regression model for age and total UPDRS score	92
34	Linear regression model for age of onset and total UPDRS score	92
35	Linear regression model for number of hepatic encephalopathies and total UPDRS score	93
36	Linear regression model for serum potassium and total UPDRS score	93
37	Linear regression model for INR and total UPDRS score	94
38	Linear regression model for total bilirubin and total UPDRS score	94
39	Linear regression model for serum albumin and total UPDRS score	95
40	Linear regression model for age of onset in years and axial sub-score	97
41	Linear regression model for number of hepatic encephalopathies and axial sub-score	97

List of Tables

Table	Title	Page
1	Loops of Basal ganglia	14
2	Episodic vs Recurrent HE	60
3	5 th classification suggested for HE	61
4	Differential diagnosis of HE	62
5	Spectrum of WD	64
6	Gender characteristics of the studied sample	78
7	Age, age at onset & years of chronic liver disease in the studied sample	79
8	Causes of chronic liver disease among the studied sample	81
9	Interferon therapy among the studied sample	82
10	Portal vein diameter among the studied sample	82
11	Brain CT scans among the studied sample	83
12	Brain MR imaging among the studied sample	83
13	Presence of parkinsonian features among the studied sample	84
14	Distribution of parkinsonian features among studied sample	85
15	Presence of axial parkinsonian features among the studied sample	86
16	Presence of dystonia among the sample	86
17	Comparison between gender and presence of parkinsonian features	87
18	Comparison between cause of CLD and presence of parkinsonian features	87
19	Comparison between portal vein diameter and presence of parkinsonian features	88
20	Comparison between gender and presence of <u>axial</u> parkinsonian features	88
21	Comparison between causes of CLD and presence of axial parkinsonian features	89

22	Comparison between portal vein diameter and presence of <u>axial</u> parkinsonian features	89
23	Comparison between HCV status and portal vein diameter	90
24	Pearson's correlation and linear regression analyses between total score of UPDRS and other variables	91
25	Pearson's correlation and linear regression analyses between axial sub-score of UPDRS and other variables	96
26	Comparison between mean number of HEs among patients with and without parkinsonian features	98
27	Comparison between mean serum albumin among patients with and without parkinsonian features	98
28	Comparison between mean international normalized ratio (INR) among patients with and without parkinsonian features	99
29	Comparison between mean age among patients with and without axial parkinsonian features	99
30	Comparison between mean age at onset of CLD among patients with and without axial parkinsonian features	100
31	Comparison between mean serum potassium among patients with and without axial parkinsonian features	100

INTRODUCTION

The liver is the largest internal organ of the body, with blood supplied from both the hepatic artery and the portal vein. The liver performs many functions, including synthesis of most serum proteins, regulations of glucose and lipids, and production of bile. These essential functions are impaired when a liver develops cirrhosis. Cirrhosis is defined pathologically by the loss of normal microscopic lobular architecture with fibrosis and nodular regeneration. Chronic alcoholism and Chronic Hepatitis C are the leading causes of cirrhosis (*Karnath*, 2003).

Portal hypertension, a complication of chronic liver disease, results from the replacement of normal hepatic parenchyma with fibrotic tissue; leading to resistance to blood flow through the liver (*Mohammad*, 2012).

Portal hypertension can lead to other complications of chronic liver disease, including the development of varices and variceal bleeding, ascites and spontaneous bacterial peritonitis. In addition, the loss of hepatocytes and intrahepatic shunting of blood diminishes liver's metabolic and synthetic function; this may result in a reduction in ammonia metabolism, further leading to hepatic encephalopathy (*Mohammad*, 2012).

Hepatic encephalopathy (HE), referred to as portosystemic encephalopathy, is a syndrome of neuropsychiatric abnormalities caused by acute or chronic hepatic insufficiency. These neuropsychiatric disturbances of HE are often partly reversible (*Mohammad*, 2012).

The question, of whether hepatic encephalopathy is completely reversible or not, is controversial; and some neurological deficits may persist (*Romeiro et al.*, 2011).

A minority of patients with chronic liver disease develop acquired hepatocerebral degeneration — a progressive neurologic disorder characterized by extrapyramidal signs, ataxia, and cognitive decline. Although the pathogenesis of acquired hepatocerebral degeneration is not known, diversion of portal blood into the systemic circulation appears to underlie the syndrome (*Khokhar et al.*, 2005).

Until now there is no consensus about whether or not does repeated hepatic encephalopathies constitute a key factor in a more chronic disease, acquired hepatocerebral degeneration (*Romeiro et al.*, 2011).

Acquired (Non-Wilsonian) hepatocerebral degeneration (AHD) is a rare irreversible complication of chronic liver disease (CLD) and was first described by Van Woerkom in 1914 and Victor and coworkers in 1965. They attributed it to metabolic toxins exposure to encephalopathy. Dementia, dysarthria, cerebellar dysfunction, movement disorders, myoclonus, rigidity, dystonia, myelopathy, hyperreflexia, and extensor plantar responses have all been reported (Khokhar et al., 2005).

Recent neuro-radiological imaging studies, mainly MRI; have shown hyper intense signals in the pallidum, putamen, mesencephalon, internal capsule, lentiform nucleus and cerebral peduncles on T1 weighted images (*Khokhar et al.*, 2005).

AHD is a chronic encephalopathy which occurs in $\sim 1\%$ of patients with liver cirrhosis and seems related to portosystemic shunts. It is characterized by a combination of Parkinsonism and cerebellar signs. MRI pallidal and extrapallidal lesions are seen in most patients, probably reflecting intracerebral deposits of manganese (*Fernández-Rodriguez et al.*, 2010).

Excess dietary manganese is rapidly cleared by the liver before reaching the systemic circulation. In patients with cirrhosis and porto-systemic shunting, manganese bypasses the liver and accumulates in the internal pallidum, while serum manganese levels may be normal or increased (*Meissner and Tison*, 2011).

Magnetic resonance imaging abnormalities mainly consist of a signal hyper intensity on T1-weighted images in the internal pallidum. It may also be seen in the putamen, the caudate nucleus, the internal capsule, the mesencephalon, and the cerebellum, and is believed to reflect local manganese accumulation. No specific treatment of AHD exists up till now (Meissner and Tison, 2011).

AIM OF THE WORK

Aim of the Study:

This is a study to determine the prevalence of extrapyramidal signs in chronic liver disease patients for a possible further investigation of those patients in a later study.

Rationale:

knowledge, there is available To our no significant prevalence data about the extrapyramidal signs in chronic liver patients in Egypt. This group of patients has chance of being properly studied limited pathophysiology determine the and possible treatment options to improve their quality of life.

ANATOMY & PHYSIOLOGY OF BASAL GANGLIA AND LIVER

Basal Ganglia

Ensuring coordination of the nervous system functioning, communication between various structures, adjusting the functions to the changes in internal and external environment depends on processing of substantial amount of information (*Groenewegen*, 2007; *Groenewegen and van Dongen*, 2007).

Before a motor signal descends from the motor cortex to the brain stem and spinal cord, several cortical and subcortical centers, including the basal ganglia and the cerebellum, pose their influence to 'shape' the final descending signal. The basal ganglia and the cerebellum exert their influence on the final motor output pathways largely via the thalamus on the descending, corticobulbar and corticospinal motor pathways that originate in the motor and premotor areas of the cerebral cortex (*Groenewegen*, 2003).

The basal ganglia (BG) are a group of interconnected subcortical nuclei spanning the telencephalon, diencephalon, and midbrain; as shown in figure (1) adapted from Gorzelańczyk, 2011 (Gorzelańczyk, 2011).