州. 5~

13362

THE EFFECT OF SOME TOXICANTS ON EGGREPRODUCTION OF THE COTTON LEAF-WORM Spodoptera littoralis (Boisd.)

A THESIS

Submitted in Partial Fulfilment of the Requirements For the Award of the Degree of

MASTER OF SCIENCE

By MAGDA EDOUARD WAHBA

(B. Sc.)

Department of Entomology Faculty of Science Ain Shams University 5951 M.E.

1981

THESIS EXAMINATION COMMITTEE

NAME	TITLE	SIGNATURE	
• • • • • •	• • • • •		

BIOGRAPHY

Date and place of birth : June 12, 1950. Cairo.

Date of Graduation : June, 1972.

Degree Awarded : B. Sc. (special degree) in

Entomology.

Occupation : Researcher, Plant Protection,

Research Institute, Ministry of

Agriculture.

Date of Appointment : September, 1974.

Date of Registration : April, 1977.

ACKNOWLEDGEMENTS

The author is indebted with sincerest gratitude to Dr. Soad, A. Soliman, Professor and Head of Entomology Department, Faculty of Science, Ain Shams University, for approving the subject, and for her continuous aid and valuable advice throughout the work, and for reading and correcting the manuscript.

Sincere thanks are expressed to Dr.Galal Metwali, Professor and Head of Plant Protection Research Institute, Ministry of Agriculture, for offering work facilities as well as perfect guidance and direction.

The author is also grateful to Dr. A. Maher Ali, Professor and Head of plant Protection Department, Faculty of Agriculture, Assiut University, for suggesting the subject, great help and direction.

The author wishes to express her deep gratitude and appreciation to Dr.Farida Ayad, Assistant Prof., Central Agricultural Pesticide laboratory, plant Protection Research Institute, Ministry of Agriculture, for taking share in suggesting the subject, help, advice and sincere encouragement.

The author is deeply obliged to Dr. Bahira El Sawaf, Assistant Prof., Entomology Department, Faculty of science, Ain Shams University, for her great help, in preparing the manuscript.

Also, sincere gratitude is due to Dr. M.S. Abdel Fattah., Lecturer in Central Agricultural Pesticide laboratory, Plant Protection Research Institute, Ministry of Agriculture, for revising the manuscript and his assistance with the statistical analysis.

Sincere thanks and great appreciation are expressed to my colleagues and all members of the Toxicity Pesticide laboratory, plant Protection Research Institute, for their sincere help and the facilities they offered throughout this study.

COURSES STUDIED BY THE CANDIDATE IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR

THE (M. Sc.) DEGREE

- Language: (French, M. Sc. Course)
Examination passed on: March, 1975

- Entomology courses:

- 1- New Approaches to Insect control.
- 2- Advanced Taxonomy and Anatomy.
- 3- Implications of Problems in suppression and Control of Insects.
- 4- General Entomology.
- 5- Research subject.

Examination passed on: September, 1974.

- Statistical course:
Biological statistics.
Examination passed on: September, 1974.

- Supervisors

- Dr. Soad, A. Soliman.
 Prof. of Entomology and the Head of Entomology
 Department, Faculty of Science, Ain Shams University.
- Dr. A.Galal Metwali: Prof. of Entomology and the Head of Plant Protection Research Institute, Ministry of Agriculture.
- Dr. Farida, A. Ayad.
 Assistant Prof. in Central Agricultural Pesticide
 Laboratory, Plant Protection Research Institute,
 Ministry of Agriculture.

CONTENTS

		Page
	Introduction	1
	Materials and Methods	7
		•
	1- Establishment and rearing of the laboratory	
	strain	7
	2- Rearing technique	7
	3- Insecticides used	9
	4- Application of sub-lethal doses to 6th	•
	instar larvae	10
	5- Application of sub-lethal doses to adult	
	stago	12
IV-	Results of the present study	15
	A- Effect of treatment of 6th instar larvae	
	with cypermethrin and phenovalerate on the	
	different developmental stages :	16
	1) Larval duration	16
	2) Pupal duration	
	3) Pupal weight	22 26
	4) Percentage pupation	
	5) Percentage of adult emergence	28
	6) Adults longevity	30 32
	7) Egg-production.	32 36
	8) Hatchability	40
	~ · · · · · · · · · · · · · · · · · · ·	ALI L

	Page
B- Effect of treatment of the adult stage with cypermethrin and Phenovalerate on the	
different developmental stages :	42
1) Larval duration	42
2) Pupal duration	46
3) Pupal weight	50
4) Percentage pupation	52
5) Percentage of adult emergence	54
6) Adults longevity	56
7) Egg-production	62
8) Hatchability	66
V- Discussion of results and conclusion	69
VI- Summary	81.
VII- Literature cited	86
VIII- Arabic Summary.	

I. INTRODUCTION

I- INTRODUCTION

It is hardly necessary to emphasize the importance of the cotton leafworn Spodoptera littoralis (Boisd.), as a source of injury to the cotton crop, in addition to its attack to more than sixty different crops. In years of severe infestation, in addition to various control measures, there is a need for chemical control with organic insecticides. Organochlorine insecticides succeeded in controlling this pest effectively starting 1945 up to 1960. Then the cotton leafworm started to develop resistance to such compounds and hence organophosphorus and carbamate compounds were introduced and were used extensively. Since the appearance of resistance to organophosphorus and carbamate insecticides, newer compounds, including synthetic pyrethroids have been investigated for the control of this pest.

The applied insecticides are acting as a powerful selective agent for concentrating resistant individuals that were present in low frequencies in the original population of the pest. No doubt the study of biological activities of this pest in the presence of the toxic applications may help to clarify many of the unexplained

phenomena concerning resistance. The effect of sublethal doses on the reproductive potential seems very
important from the economic point of view, since it
directly affects the population of the pest. In that
respect the real effect of sub-lethal doses of pesticides on the population dynamics of the pest is not clearly
known.

With this view point the present work was planned to investigate some of the biological activities of the cotton leafworm.

Aim of the present study:-

- 1- The study of biological activities of the couton leaf worm during two successive generations following treatment of the larval stage with LD₅₀ of cypermethrin and phenovalerate.
- 2- Studying such activities upon treatment of the adult stage with LD₃₀ of cypermethrin and phenovalerate.

11- LITERATURE REVIEW

II- LITERATURE REVIEW

Moriarty (1969), mentioned that the effects of sub-lethal doses of synthetic insecticides: organochlorine. organophosphorus and carbamate compounds on insects. were often difficult to asses. This is due to apparent differences between treated and untreated individuals which were sometimes caused by selective mortality of the treated ones. The author mentioned that all types of synthetic insecticides can influence reproductive potential by increasing or decreasing the number of eggs produced or by affecting egg fertility or subsequent development. reduced feoundity or fertility. This could be caused either directly by inhibition or distortion of ovary development, or indirectly by reduced feeding. He added that the effects of insecticides on behaviour might include increased activity, reduced feeding and a lowered acceptance threshold for sucrose. He suggested that latent toxicity and some behavioural changes were probably caused by direct effects on the nervous system. but some of the other results might be secondary stress effects. There was also the possibility of direct action of the insecticide on other systems. Latent toxicity.

which is a reduction of life - span or increased tendency to die at particular developmental stages, was found only after organochlorine treatment. It seems to be linked with fat metabolism and showed that sub-lethal effects might occur a long time after contamination with persistent insecticides.

Abdallah and El-Sayed (1979), showed that more than 50 % of larvae of Spodoptera littoralis, surviving the 1050's of Rup 962, SH₁₄₇₉ and CCN₅₂, died at the end of the larval stage. An increase in larval period was evident in all tests. A reduction in focundity, as a result of larval treatment, ranged between 15.2-43.6%. Variable but insignificant effects was also expressed on the pupal mortality and the adult emergence. Viability of eggs was not significantly affected by larval treatment. However, up to 11.86% decrease in hatchability was reached in the Rup 962 treatment.

Awad (1979), studied the biological aspects of Spodoptera littoralis in two successive generations following larval treatments with LD_{25} and LD_{50} of permethrin and cypermethrin. He found that all treatments prolonged the larval period of F_1 and F_2 significantly except

permethrin at LD₂₅, which produced an insignificant effect. Cypermethrin prolonged significantly the pupal period in F, while permethrin had no effect. High dose of permethrin prolonged the pupal period of F2 significantly, while an insignificant effect was noticed for cypermethrin. The percentages of pupation and adult emergence were reduced following larval treatments with these insecticides. The effect was clearly noticed in treated parents than in the progeny and for cypermethrin than for permethrin. All treatments shortened the duration of male and female adults of both two generations. The tested insecticides reduced signicantly the number of eggs deposited by adult female of the two generations. There were no significant differences between the effect of LD25 and LD50. Increasing the dose from LD₂₅ to LD₅₀ produced significant reduction in percentage hatchability in both generations, and this is more obvious in treated generations than in the \mathbf{F}_{1} \bullet

El-De b et al (1980) stated that the treatment of susceptible, R-curacron and R-cypermethrin larvae of Spodoptera littoralis with LD₅₀ of cypermethrin, caused