EFFECT OF INSECT GROWTH REGULATORS AGAINST

Culex pipiens (Diptera - Culicidae)

A THESIS

Submitted in Partial Fulfilment of the Requirements for the Award of the Degree of

MASTER OF SCIENCE

Ву

REDA FADEEL ALY BAKR

B. Sc.

Pepartment of Entomology
Faculty of Science
Ain Shams University
Cairo

M.5C

168 13

1982

THESIS EXAMINATION COMMITTEE

Name	TITLE	SIGNATURE
•••••	********	
	•••••	

BIOGRAPHY

Date and Place of Birth

: 25th August, 1955, Qalyubia.

Date of Graduation

: June 1978.

Degree Awarded

: B.Sc. Special Entomology.

Grade

: Very good.

Occupation

: Demonstrator in Entomology

Department, Faculty of Science,

Ain Shams University.

Date of Appointment : 1-10-1978.

Date of Registration for the

M. Sc. Degree

COURSES STUDIED BY THE CANDIDATE

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE (M. Sc.) DEGREE.

Language:

: (French, M.Sc. Course)

Examination passed on: March 1980.

Entomology Courses:

- 1. New Approaches to Insect Control.
- 2. Environmental Pollution.
- Implication of Problems in Suppression and Control of Insects.
- 4, Insect Pathology.
- 5. Population dynamic.
- 6. Comparative anatomy of insects.
- 7. Methods of Research and Thesis work.

 Examination passed on: February, 1980.

Statistical Course:

Biological statistics,

Examination passed on: February, 1980.

Supervisors:-

Professor Dr. Auni M. Guneidy

Assistant prof. Dr. Naima A. Abdel Razik.

Assistant prof. Dr. M.S. Hamed.

Head of Department. Prof. Dr. Zaki M. Rostum

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Dr. A.M.Guneidy, professor of Entomology and vice Dean, faculty of Science, University of Ain Shams, for suggesting the problem, his valuable advice and kind encouragement and for reading and correcting manuscript.

Thanks are also due to Dr. Naima A. Abdel Razik, Assistant professor, Dr. Mohamed S. Hamed, Assistant professor, of Department Entomology, for their help throughout the period of study and for their direct supervision of this work.

The author is also indebted with thanks to the head of the Department of Entomology and the rest of the staff member, Faculty of Science, University of Ain Shams, for offcring the facilities that made this work possible and for their centinuous encouragement throughout the period of this study.

CONTENTS

-	Page
I. INTRODUCTION	1
II. LITERATURE REVIEW	4
1. Maintenance of Cultures	5
2. Treatment of eggs	5
Viability of eggs	5
3. Larval treatment	9
a) Effect of IGR'S against different larval	
instar	9
b) Longevity of various formulations of the	
IGR'S against the most sensitive larval insta	r 19
c) Effect of temperature on the stability of	
the used IGR'S	· 21
4. Treatment of adults	
a) Adult baiting	. 21
b) Contact effect of IGR'S	• 22
III. MATERIALS AND METHODS	
I. Maintenance of Cultures	• 24
II. Treatment of eggs	
1. Viability of eggs	• 29
III. Larval treatment	
1. Effect of IGR'S against different larval inst	ar 30
2. Ricessays Tests	03

	Page
a) Longevity of various formulations of the	
IGR'S against the most sensitive larval instar	31
b) Effect of temperature on the stability of the	
used IGR's	32
IV. Treatment of adults	
1. Adult baiting	33
2. Contact effect of IGR's	34
IV- EXPERIMENTAL RESULTS:	
1. Viability of eggs	35
2. Effect of IGR's against different larval instar	42
3. Longevity of various formulations of the IGR's	
against the late fourth larval instar	54
4. Effect of temperature on the stability of the	
used IGR's	5 8
5. Adult baiting	61
6. Contact effect of IGR's	67
v. DISCUSSION OF RESULTS AND CONCLUSIONS	69
VI. SUMMARY	90
VII. LITERATURE CITED	94
ARABIC SUMMARY	

I- INTRODUCTION

I. INTRODUCTION

Of the some thousand or more important species of mosquitoes in the world, about 300 are posing asserious threat to human health and well-being.

To control mosquito-borne diseases and to improve the quality of living, large -scale and continuous mosquitocontrol programs are implemented by many international and national agencies. The increasing threat of mosquito resistance to chlorinated hydrocarbons and organophosphate larvicides has initiated research in alternative chemicals for mosquito control. The potential control value of insect growth regulators has been extensively tested in both laboratory tests and field trails. These types of compounds became available for experimentation, field evaluation. and commercial exploitation quite recently (1969-1970). Insect growth regulator is a term encompassing a relatively new group of chemical compounds that alter growth and development in insects. Their effects have been observed on embryonic, larval and nymphal development; on metamorphosis, and on reproduction in males and females. chemicals include analogues and mimics of insect Juvenile hormones and other developmental regulating agents.

Structurally, some of these compounds are only distantly related to the known naturally occurring insect hormones. The insect growth regulators, as these types of compounds are known, induce a variety of responses in the target and non target organisms. They can inhibit hatching of eggs, induce delayed mortality in the larvae and pupae, and result in the inhibition of adult emergence.

Unlike the quick-acting organophosphate and other larvicides, the effects of the insect growth regulators may not be visible until a few days or weeks after treatment. To date, only two insect growth regulators have been extensively experimented with against mosquito larvae and selected groups of non target organisms. One of these, methoprene or Altosid, has been in commercial use since 1974 in the United States for mosquito control, while the other, difflubenzaron or Dimilin, has been employed in mosquito control in canada, Europe, and Africa since 1977 and is on the verge of becoming available for mosquito control in United states.

In general, both these insect growth regulators, exhibit a remarkable wide margin of safety for Fish and birds.

They, however, manifest various degrees of chronic and acute toxicity to some aquatic invertebrates in the taxa phylogentically related to insects or the order Diptera in particular.

AIM OF THE PRESENT WORK:

The present study was undertaken as an attempt to determine the following: - -

- 1) Effect of the insect growth regulators on hatching of freshly mosquito eggs.
- 2) Effect of the insect growth regulators against different larval instars, determination the longevity of various formulations of these chemicals against the most sensitive larval instar and effect of temperature on the stability of IGR's.
- 3) Study of latent effects on progeny of adults baited and exposed to thin films of chemicals under investigation.

II- LITERATURE REVIEW

II. LITERATURE REVIEW

1. Maintenance of Cultures:-

The suitable conditions required for the survival of mosquito larvae and adults in laboratory were previously described by many authors.

Among these Boyd <u>et al</u> (1938), reported that the presence of fresh yeast is important for rearing of \underline{A} . quadrimaculatus larvae.

Hackett and Bates (1938) found that mud, bread, yeast, algal culture, dried blood, serum and dog biscuit were seemed to be necessary for the development of mosquito larvae.

The suitable size of the breeding cages, the breading conditions (temperatures and relative humidity) and diets for rearing of the adult mosquitoes were studied by several authors Hackett and Bates (1938), Marcovitch (1938).

Russel and Mohan (1939), Deame and causy (1943). Mohan (1945), Theodor and parsons, 1945, Wayer (1965).

Hackett and Bates (1938), Theodor and Parsons (1945) recommended a variety of light colours are important for successful swarming, mating and oviposition of some species of mosquetto addition. Ain Shams University

Rugene et al. (1968) and soliman et al. (1969) found that the sex ratio is important factor for fertilization of A. stephensi and A. pheroensis adult.

Eugene et al. (1969) described the mass rearing of Culex pipiens. Eggs rafts are kept in a plastic container (12.7 x 12.78 x 6.35 cm.) half filled with water. The larvae reared in enamel bowels using tap water and purino dog as food.

2. Treatment of eggs:-

Viability of eggs:-

Slama and Williams (1966); First described Juvenile hormone as an inhibitor of insect embryogenesis, showing that application of the analogue to freshly laid eggs of the bug, Pyrrhocoris apterus prevented their hatching.

Ascher and Nemny (1974); proved experimentally that the PH 6040 is very high toxicity to Egyptian cotton leaf worm, Spodoptera littoralis eggs in laboratory experiments; 100% kill was obtained by dipping young eggs in a 0.000025% a.i. dilution in water of a 5% liquid formulation of the compound.

Ables et al. (1975); reported that in the laboratory, topical application of Dimilin at 10000,100, 50 and 10 ppm