

Ain Shams Univerisity Faculty of Science **Botany Department**

ECOLOGICAL AND PHYSIOLOGICAL STUDIES ON BETA VULGARIS L. VAR. RAPA IRRIGATED BY **SEA WATER**

THESIS

Submitted for the degree of DOCTOR OF PHILOSOPHY IN

581.1 H.A

Prof. Dr

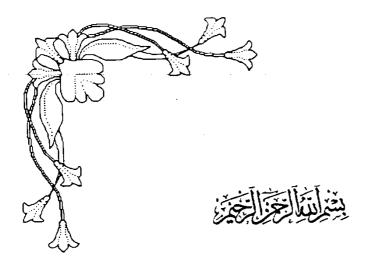
Hassan A. Foda

BOTANY (Physiological Ecology)

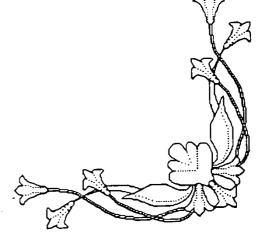
El Aziz M. Mosllan Hossney Abd

(B. Sc.,[Hons] M. Sc)

Supervisors (), \(\)


Prof. Dr

Raifa A. Hassanein


Raifa Hassanein

Hassan Fake

1993

صدق الله العظيم سورة الرجمن الاية رقم ﴿ ٢١ ، ٢٠ ، ٢١ ﴾

List of Tables

			F	age
Table	(1)	:	Sae water analysis.	. 34
Table	(2)	:	Effect of irrigation or sprinkling with certain levels of sea water on certain growth parameters of Beta vulgaris plants.	64
Tabio	e(3 a -;	D:	Effect of irrigation with different levels of sea water on growth parameters and yield of <i>Beta vulgaris</i> plant during different stages of growth.	70-78
Table	(4)	:	Chemical tests for indole compounds and certain gorwth inhibitors of the fractionated extracts of the terminal buds of <i>Beta vulgaris</i> plants grown under different salinity levels of sea water at different stages of growth.	-
Table	(5)	:	Chemical tests for indole compounds and certain gorwth inhibitors of the fractionated extracts of the roots of <i>Beta vulgaris</i> plants grown under different salinity levels of sea water at different stages of growth.	
Table	(6)	:	Chemical tests of gibberellin substances of the fractionated extracts of the terminal buds and the roots of <i>Beta vulgaris</i> plants gorwn under different salinity levels of sea water.	:
Table	(7)	:	Chemical tests of purine substances which may have cytokinin activity of the fractionated extracts of the terminal buds and the roots of <i>Beta vulgaris</i> plants grown under different salinity levels of sea water.	;
Table	(8)	:	Effect of irrigation with different levels of sea water on the photosynthetic pigments of the leaves of <i>Beta vulgaris</i> plants during different stages of growth.	
Table	(9)	:	Effect of irrigation with different levels of sea water on the anthocyanin contents of the leaves and the roots of <i>Beta vulgaris</i> plants during different stages of growth	
Table	(10)	:	Effect of irrigation with different levels of sea water on the carbohydrate contents of the tops of <i>Beta vulgaris</i> plants during different stages of growth	
Table	(11)) :	Effect of irrigation with different levels of sea water on the carbohydrate contents of the roots of Beta vulgaris plants during different stages of growth	104
Table	e (12)) :	Effect of irrigation with different levels of sea water on the nitorgenous contents of the tops of <i>Beta vulgaris</i> plants during different stages of growth.	
Table	e (13)) :	Effect of irrigation with different levels of sea water on the nitorgenous contents of the roots of Beta vulgaris plants during different stages of growth	
Table	(14) :	Effect of irrigation with different levels of sea water on the proline contents of Beta vulgaris plants during different stages of growth.	
Table	e (15) :	Effect of irrigation with different levels of sea water on the nucleic acid contents of the tops of Beta vulgaris plants during different stages of growth.	

	Page
	Effect of irrigation with different levels of sea water on the nucleic acid contents of the roots of <i>Beta vulgaris</i> plants during different stages of growth
	Effect of irrigation with different levels of sea water on the mineral composition of the tops of <i>Beta vulgaris</i> plants during different stages of growth.
•	Effect of irrigation with different levels of sea water on the mineral composition of the roots of <i>Beta vulgaris</i> plants during different stages of growth.
	The chemical analysis of the extracts of the soil supported <i>Beta vulgaris</i> plants irrigated with different levels of sea water at different stages of plant growth 128
Table(20a-j):	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin or CCC on the growth parameters and yield of <i>Beata vulgaris</i> plants during different stages of growth.
Table (21) :	Chemical tests for indole compounds and certain gorwth inhibitors of the fractionated extracts of the terminal buds of <i>Beta vulgaris</i> plants sprayed with GA ₃ , kinetin or CCC and irrigated with 15% sea water at different stages of plant growth
	Chemical tests for indole compounds and certain gorwth inhibitors of the fractionated extracts of the roots of <i>Beta vulgaris</i> plants sprayed with GA ₃ , kinetin or CCC and irrigated with 15% sea water at different stages of plant growth.
	Chemical tests for indole compounds and certain gorwth inhibitors of the fractionated extracts of the terminal buds of <i>Beta vulgaris</i> plants sprayed with GA ₃ , kinetin or CCC and irrigated with 30% sea water at different stages of plant growth.
Table (24)	Chemical tests for indole compounds and certain gorwth inhibitors of the fractionated extracts of the roots of <i>Beta vulgaris</i> plants sprayed with GA ₃ , kinetin or CCC and irrigated with 30% sea water at different stages of plant growth.
Table (25)	: Chemical tests for indole compounds and certain gorwth inhibitors of the fractionated extracts of the terminal buds of <i>Beta vulgaris</i> plants sprayed with GA ₃ , kinetin or CCC and irrigated with 60% sea water at different stages of plant growth.
Table (26)	: Chemical tests for indole compounds and certain gorwth inhibitors of the fractionated extracts of the roots of <i>Beta vulgaris</i> plants sprayed with GA ₃ , kinetin or CCC and irrigated with 60% sea water at different stages of plant growth.————————————————————————————————————
Table (27)	: Chemical test for gibberellin compounds of the fractionated extracts of the terminal buds and the roots of <i>Beta vulgaris</i> plants sprayed with GA ₃ , kinetin or CCC and irrigated with 15% sea water at different stages of plant growth
Table (28)	: Chemical test for gibberellin compounds of the fractionated extracts of the terminal buds and the roots of <i>Beta vulgaris</i> plants sprayed with GA ₃ , kinetin or CCC and irrigated with 30% sea water at different stages of plant growth.—— 176

			r :	age
Table	(29)	:	Chemical test for gibberellin compounds of the fractionated extracts of the terminal buds and the roots of <i>Beta vulgaris</i> plants sprayed with GA ₃ , kinetin or CCC and irrigated with 60% sea water at different stages of plant growth.	177
Table	(30)	:	Chemical test of purine substances which may have cytokinin activity of the fractionated extracts of the terminal buds and the roots of <i>Beta vulgaris</i> plants sprayed with GA ₃ , kinetin or CCC and irrigated with 15% sea water at different stages of plant growth.	187
Table	(31)	:	Chemical test of purine substances which may have cytokinin activity of the fractionated extracts of the terminal buds and the roots of <i>Beta vulgaris</i> plants sprayed with GA ₃ , kinetin or CCC and irrigated with 30% sea water at different stages of plant growth.	188
Table	(32)	:	Chemical test of purine substances which may have cytokinin activity of the fractionated extracts of the terminal buds and the roots of <i>Beta vulgaris</i> plants sprayed with GA ₃ , kinetin or CCC and irrigated with 60% sea water at different stages of plant growth.	189
Table	(33)	:	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the photosynthetic pigments of the leaves of Beta vulgaris plants at stage A.	193
Table	(34)	:	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the photosynthetic pigments of the leaves of <i>Beta vulgaris</i> plants at stage B.	194
Table	(35)	:	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the photosynthetic pigments of the leaves of Beta vulgaris plants at stage C.	195
Table	(36)	:	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the photosynthetic pigments of the leaves of <i>Beta vulgaris</i> plants at stage D.	196
Table	(37)	· :	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the photosynthetic pigments of the leaves of <i>Beta vulgaris</i> plants at stage E.	197
Table	(38)	٠:	Interactive effect of applying different conentrations of sea water and each of GA ₃ , kinetin and CCC on the anthocyanin contents of <i>Beta vulgaris</i> plant during their different stages of growth.	
Table	(39)	٠:	Interactive effect of applying different conentrations of sea water and each of GA ₃ , kinetin and CCC on the carbohdrate contents of the tops of <i>Beta vulgaris</i> plants during different stages of growth.	
Table	e (40)) :	Interactive effect of applying different conentrations of sea water and each of GA ₃ , kinetin and CCC on the carbohdrate contents of the roots of Beta vulgarisI plants during different stages of growth.	

			ray	je
Table	(41)	:	Interactive effect of applying different conentrations of sea water and each of GA ₃ , kinetin and CCC on the nitrogenous contents of the tops of <i>Beta vulgaris</i> plants during different stages of growth.)
Table	(42)	:	Interactive effect of applying different conentrations of sea water and each of GA ₃ , kinetin and CCC on the nitrogenous contents of the roots of <i>Beta vulgaris</i> plants during different stages of growth.	[
Table	(43)	:	Interactive effect of applying different conentrations of sea water and each of GA ₃ , kinetin and CCC on the proline contents of <i>Beta vulgaris</i> plants during different stages of growth.	5
Table	(44)	:	Interactive effect of applying different conentrations of sea water and each of GA ₃ , kinetin and CCC on the nucleic acids contents of the tops of <i>Beta vulgaris</i> plants during different stages of growth.	7
Table	(45)	:	Interactive effect of applying different conentrations of sea water and each of GA ₃ , kinetin and CCC on the nucleic acids contents of the roots of Beta vulgaris plants during different stages of growth	3
Table	(46)	:	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the mineral composition of the tops of <i>Beta vulgaris</i> plants at stage A of growth.	2
Table	(47)	:	Interactive effect of applying different concentrations of sea water and each of GA ₃ kinetin and CCC on the mineral composition of the tops of <i>Beta vulgaris</i> plants at stage C of growth.	3
Table	(48)	:	Interactive effect of applying different concentrations of sea water and each of GA ₃ kinetin and CCC on the mineral composition of the tops of <i>Beta vulgaris</i> plants at stage E of growth.	4
Table	(49)	:	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the mineral composition of the roots of <i>Beta vulgaris</i> plants at stage A of growth.	5
Table	(50)	:	Interactive effect of applying different concentrations of sea water and each of GA ₃ kinetin and CCC on the mineral composition of the roots of Beta vulgaris plants at stage C of growth.	5
Table	(51)	:	Interactive effect of applying different concentrations of sea water and each of GA ₃ kinetin and CCC on the mineral composition of the roots of <i>Beta vulgaris</i> plants at stage E of growth.	7
Table	(52)	:	Interactive effect of sprinkling with sea water and each of GA ₃ , kinetin or CCC on growth parameters of Beta vulgaris plants.	0

Fig.(1):	Standard curve for glucose.	.44
Fig.(2) :	Standard curve for proline.	47
Fig.(3):	Standard curve for RNA	50
Fig.(4) :	Standard curve for DNA.	51
Fig.(5):	Standard curve for phosohorus.	54
Fig.(6) :	Standard curve for iron.	57
Fig.(7):	Standard curve for boron.	60
Fig.(8):	Effect of irrigation with different levels of sea water on the auxins and growth inhibitors contents of the terminal buds of <i>Beta vulgaris</i> plants during different stages of growth.	81
Fig.(9):	Effect of irrigation with different levels of sea water on the auxins and growth inhibitors contents of the roots of <i>Beta vulgaris</i> plants during different stages of growth.	82
Fig.(10):	Effect of irrigation with different levels of sea water on gibberellin levels of the terminal buds of <i>Beta vulgaris</i> plants during different stages of growth.	87
Fig.(11):	Effect of irrigation with different levels of sea water on gibberellin levels of the roots of <i>Beta vulgaris</i> plants during different stages of growth.	88
Fig.(12):	Effect of irrigation with different levels of sea water on cytokinin contents of the terminal buds of <i>Beta vulgaris</i> plants during different stages of growth.	92
Fig.(13):	Effect of irrigation with different levels of sea water on cytokinin contents of the roots of Beta vulgaris plants during different stages of growth.	93
Fig.(14) :	Effect of irrigation with different levels of sea water on the photosynthetic pigments of the leaves of <i>Beta vulgaris</i> plants during different stages of growth.	98
Fig.(15) :	Effect of irrigation with different levels of sea water on the anthocyanin contents of <i>Beta vulgaris</i> plants during different stages of growth.	101
Fig.(16)	Effect of irrigation with different levels of sea water on the carbohydrate contents of the tops of Beta vulgaris plants during different stages of growth.	105
Fig.(17)	Effect of irrigation with different levels of sea water on the carbohydrate contents of the roots of Beia vulgaris plants during different stages of growth.	106
Fig.(18)	: Effect of irrigation with different levels of sea water on the nitrogenous contents of the tops of <i>Beta vulgaris</i> , plants during different stages of growth	111

	ı	Page
Fig.(19)	Effect of irrigation with different levels of sea water on the nitrogenous contents of the roots of Beta vulgaris plants during different stages of growth	112
Fig.(20)	Effect of irrigation with different levels of sea water on the proline content of Beta vulgaris plants during different stages of growth.	115
Fig.(21)	: Effect of irrigation with different levels of sea water on the nucleic acid contents of Beta vulgaris plants during different stages of growth.	119
Fig.(22)	: Effect of irrigation with different levels of sea water on the mineral composition of the tops of <i>Beta vulgaris</i> plants during different stages of growth.	123
Fig.(23)	: Effect of irrigation with different levels of sea water on the mineral composition of the roots of <i>Beta vulgaris</i> plants during different stages of growth.	124
Fig.(24)	: Interactive effect of applying 15% sea water and each of GA ₃ , kinetin and CCC on the auxins and growth inhibitors contents of the terminal buds of <i>Beta vulgaris</i> plants during different stages of growth.	152
Fig.(25)	: Interactive effect of applying 15% sea water and each of GA ₃ , kinetin and CCC on the auxins and growth inhibitors contents of the roots of Beta vulgaris plants during different stages of growth	153
Fig.(26)	: Interactive effect of applying 30% sea water and each of GA ₃ , kinetin and CCC on the auxins and growth inhibitors contents of the terminal buds of Beta vulgaris plants during different stages of growth.	154
Fig.(27)	: Interactive effect of applying 30% sea water and each of GA ₃ , kinetin and CCC on the auxins and growth inhibitors contents of the roots of <i>Beta vulgaris</i> plants during different stages of growth.	155
Fig.(28)	: Interactive effect of applying 60% sea water and each of GA ₃ , kinetin and CCC on the auxins and growth inhibitors contents of the terminal buds of Beta vulgaris plants during different stages of growth.	
Fig.(29)	: Interactive effect of applying 60% sea water and each of GA ₃ , kinetin and CCC on the auxins and growth inhibitors contents of the roots of <i>Beta vulgaris</i> plants during different stages of growth.	
Fig.(30)	: Interactive effect of applying 15% sea water and each of GA ₃ , kinetin and CCC on the gibberellin levels of the terminal buds of <i>Beta vulgaris</i> plants during different stages of growth.	: 169
Fig.(31)	: Interactive effect of applying 15% sea water and each of GA ₃ , kinetin and CCC on the gibberellin levels of the roots of <i>Beta vulgaris</i> plants during different stages of growth.	t 170
Fig.(32)	: Interactive effect of applying 30% sea water and each of GA ₃ , kinetin and CCC on the gibberellin levels of the terminal buds of <i>Beta vulgaris</i> plants during different stages of growth.) g 171

	•	aye
Fig.(33):	Interactive effect of applying 30% sea water and each of GA ₃ , kinetin and CCC on the gibberellin levels of the roots of <i>Beta vulgaris</i> plants during different stages of growth	172
Fig.(34):	Interactive effect of applying 60% sea water and each of GA ₃ , kinetin and CCC on the gibberellin levels of the terminal buds of <i>Beta vulgaris</i> plants during different stages of growth.	173
Fig.(35):	Interactive effect of applying 60% sea water and each of GA ₃ , kinetin and CCC on the gibberellin levels of the roots of <i>Beta vulgaris</i> plants during different stages of growth.	174
Fig.(36):	Interactive effect of applying 15% sea water and each of GA ₃ , kinetin and CCC on the cytokinin contents of the terminal buds of <i>Beta vulgaris</i> plants during different stages of growth.	181
Fig.(37):	Interactive effect of applying 15% sea water and each of GA ₃ , kinetin and CCC on the cytokinin contents of the roots of <i>Beta vulgaris</i> plants during different stages of growth.	182
Fig.(38):	Interactive effect of applying 30% sea water and each of GA ₃ , kinetin and CCC on the cytokinin contents of the terminal buds of <i>Beta vulgaris</i> plants during different stages of growth.	183
Fig.(39):	Interactive effect of applying 30% sea water and each of GA ₃ , kinetin and CCC on the cytokinin contents of the roots of <i>Beta vulgaris</i> plants during different stages of growth.	184
Fig.(40):	Interactive effect of applying 60% sea water and each of GA ₃ , kinetin and CCC on the cytokinin contents of the terminal buds of <i>Beta vulgaris</i> plants during different stages of growth.	185
Fig.(41):	Interactive effect of applying 60% sea water and each of GA ₃ , kinetin and CCC on the cytokinin contents of the roots of <i>Beta vulgaris</i> plants during different stages of growth.	186
Fig.(42):	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the photosynthetic pigments of the leaves of <i>Beta vulgaris</i> plants at different stages of growth.	198
Fig.(43):	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the anthocyanin contents of <i>Beta vulgaris</i> plants during different stages of growth.	202
Fig.(44):	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the carbohydrate contents of the tops of <i>Beta vulgaris</i> plants during different stages of growth	206
Fig.(45) :	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the carbohydrate contents of the roots of Beta vulgaris plants during different stages of growth.	

IIIV

	r	aye
	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the nitrogenous content of the tops of <i>Beta vulgaris</i> plants during different stages of growth.	212
Fig.(47):	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the nitrogenous contents of the roots of <i>Beta vulgaris</i> plants during different stages of growth.	213
Fig.(48):	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the proline contents of <i>Beta vulgaris</i> plants during different stages of growth.	216
Fig.(49):	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the nucleic acid contents of the tops of <i>Beta vulgaris</i> plants during different stages of growth.	219
Fig.(50):	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the nucleic acid contents of the roots of <i>Beta vulgaris</i> plants during different stages of growth.	220
Fig.(51):	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the sodium contents of <i>Beta vulgaris</i> plants during different stages of growth.	228
Fig.(52):	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the potassium contents of <i>Beta vulgaris</i> plants during different stages of growth.	230
Fig.(53):	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the calcium contents of <i>Beta vulgaris</i> plants during different stages of growth.	232
Fig.(54) :	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the phosphorus contents of <i>Beta vulgaris</i> plants during different stages of growth.	233
Fig.(55) :	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the magnesium contents of <i>Beta vulgaris</i> plants during different stages of growth.	
Fig.(56) :	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the boron contents of <i>Beta vulgaris</i> plants during different stages of growth.	236
Fig.(57)	Interactive effect of applying different concentrations of sea water and each of GA ₃ , kinetin and CCC on the iron contents of <i>Beta vulgaris</i> plants during different stages of growth.	

List of plates

	Page
Plate (1): Effect of irrigation or sprinkling of Beta vulgaris plants with certain levels of sea water on growth	65
Plate (2): Effect of irrigation with different levels of sea water on growth of Beta vulgaris plants at stage D	67
Plate (3): Interactive effect of 15 % sea water and each of GA ₃ , kinetin or CCC on the growth of Beta vulgaris plants at stage D	133
Plate (4): Interactive effect of 30 % sea water and each of GA ₃ , kinetin or CCC on the growth of Beta vulgaris plants at stage D	134
Plate (5): Interactive effect of 60 % sea water and each of GA ₃ , kinetin or CCC on the growth of Beta vulgaris plants at stage D	135
Plate (6): Interactive effect of different concentrations of sea water and each of GA ₃ , kinetin or CCC on the growth of Beta vulgaris plants at stage E	136

INTRODUCTION

INTRODUCTION

The ultimate goal of plant ecophysiologists is to understand how environment and physiological processes interact to determine the growth and reproduction of plants. One of the most important environmental factors is the soil salinity.

It is probably as early as 1937 until very recently, the literature has been reported on extensive work dealing with the quality of irrigation water, soil salinity and salt tolerance of plants. Though, most of the articles reveal some significant findings which fall into certain more or less well defined interests.

However, not much work is reported on the interrelationships of sea water modification to render it suitable for some sort of irrigation.

The fact remains that no conventional agricultural crops are yet grown with undiluted sea water, even on sand dunes (O'Leary et al., 1985 and Pasternak et al., 1985). They reported that the successful sea water irrigation depends on the use of halophytes and development of these plants for the coverage of some forage or fodder requirements (O'Leary, 1985 and Gallagher, 1985).

The water from the sea can be used to supplement agricultural water supplies, but only under very special conditions. Sea water irrigation would be feasible in coarse texture soils at different dilution levels, depending on the variations extent of salt tolerance in the plants, for the production of some crop plants (Boyko, 1966; Abaza et al., 1974; Shumakov et al., 1975; Soliman et al., 1978; Ahmed et al., 1979, 1980; Rush et al., 1976, 1981; and Somera, 1979).

Salt stresses in nature are largely due to sodium salts, particularly NaCl. Ecologically plants can be divided into basically two groups, namely: halophytes; plants that can grow in the presence of high concentration of sodium salts, and glycophytes; plants that cannot grow in the presence of high concentration of sodium salts. Salt injury may result from primary salt injury or secondary stresses arising from high concentrations of salt. In case of primary salt injury, the damage to plants such as leaf burning results from rapid accumulation of Cl⁻ (Ehlig, 1964; Tagawa and Ishizaka, 1963). The secondary stress is an osmotic stress resulting from a lowering of the external water potential below that of the cell, thus exposing the cell to a secondary water deficit stress and further deficiency stresses such as potassium deficiency due to hight NaCl as observed by Solovow (1969) in pumpkin and sweet clover. Solovow (1969) in further experiments concluded that salt stress led to difficulty in uptake of mineral nutrients due to competition with sodium.

Experiments carried out by Loger werff & Eagle (1962) Janes (1966) Zhiemuratov (1967) Parmar & Moore (1968) Petrasovits (1968) Prisco & Leary (1970) and Udovenko & Alekseeva (1973) supported the "physiological dryness" hypothesis indicating that the reduction of growth by salinization is a consequence of reduced water absorption and metabolism as a result of the increased substrate concentration.

Neiman & Poulsen (1967) emphasized that salt stunted plants are closely comparable to drought affected plants, morphologically and anatomically. Similar conclusions were approached by Kramer (1959), Kramer & Kozlowski (1960), Jarvis (1963) and Kozlowski (1964) who emphasized that increased total soil moisture stress, due to salinity, was associated with increased leaf water deficits, decreased transpiration rate, and decreased growth.