Staphylococcal Infections In The Ninties

رد. نتق

Thesis Submitted For The Portial Fulfilment Of The M.D. Degree In Internal Medicine

W.K

By

Wafas Kamal El-Din Mohammad M.R. B.Ch.: M.Sc. in Medicine

19940/x. 19940/x.

Supervised By

Prof. Dr. Mohammad Sadek Sabbour

Prof. of Internal Medicine Ain Shams University

Prof. Dr. Tahani Abd El Hamid

Prof. of Microbiology & Immunology
And Change University

To the Windshift of the Control of

1993

ACKNOWLED COMME

Thanks God for helping me accopmlish this work and for all your gifts.

I would like to express my deepest thanks to Professor Dr. Mehammad Sadek Sabbeur, Professor of Internal Medicine, Ain Shams University, not only for his continuous assistance, guidance and fruitful criticism throughout this work, but also for being such a wise teacher and physician from whom (I hope) I have learned a lot.

I would like to thank Professor Dr. Tahany Abd-Bl-Memid, Professor of Microbiology and Immunology for her guidance and the time she gave me.

I would also like to thank the patients who participated in this study, and wish them very good health.

Last, but not least, I feel greatly indebted to my parents, my husband and my daughters for their great help and sacrifice, without which this work would not have come to life.

Constants	Page
Introduction and 'Aim of the Work	1
Review of Literature	
Staphylococcus aureus	5
Coagulase-negative Staphylococci	27
Bacterial Resistance to Antimicrobials	41
Staphylococcal Resistance	48
Antimicrobials	75
Naterial and Nethods	162
Results	174
Discussion	188
Summary	218
References	223
Arabic Summary	ų.

LIST OF ARREVIATIONS

MRS methicillin-resistant staphylococci

MRSA methicillin-resistant Staphylococcus aureus

CNS coagulase-negative staphylococci

CSF cerebrospinal fluid

MIC minimum inhibitory concentration

MBC minimum bactericidal concentration

PMML polymorphonuclear leucocyte

TSS toxic shock syndrome

iv intravenous

im intramuscular

UTI urinary tract infection

Tn Transposon

IS insertion sequence

R resistance

PBPs penicillin binding protein

TMP-SMX trimethoprim-sulphamethoxazole

H-acq hospital-acquired

Comm. acq community-acquired

Isol. isolate

Inf. infection

Interv. intervention

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION AND AIM OF THE WORK

staphylococci may not be the most notorious of the microbial enemies of man, but they are certainly the most familiar of the bacterial pathogens and were the first to be recognised in clinical material. Once the germ theory of disease had received general credence in the latter end of the 19th century, it was inevitable that staphylococci should be quickly discovered in pus. In the event, it was the Scottish surgeon, Alexander Ogston, in a paper read to the 9th Congress of the German Chirurgical Society in 1880, who provided the first systematic description of the role of staphylococci in infection.

Indeed, no organism is as versatile and resilient as Staph. aureus. Not only is it a formidable pathogen with a battery of virulence factors, but it is the most elusive of opponents, requiring all the resources of the antimicrobial armamentarium to hold it in check. The other 'pyogenic cocci' have been more or less controlled by antibiotics, but Staph. aureus, despite being inherently susceptible to most antibacterial agents, has repeatedly demonstrated its ability to recover from a succession of 'knock-out blows' (Greenwood, 1986).

The range of activities of Staph. aureus, the most important species, stretches from passive commensalism, to severe, life-threatening sepsis and the elaboration of extremely potent toxins. The sudden appearance a few years

methicillin and other antistaphylococcal drugs. Nowever, Staph, aureus was able again to overcome their activity by the selection of methicillin-resistant strains (MRSA) (Haley et al., 1982). These are usually resistant to several other antibiotics (Kayser, Berger-Bachi and Beck, 1986). At present, vancomycin and teleoplanin are the most active against MRSA; so far resistance to them seems rare or absent (Williams and Gruneberg, 1984). Nowever, knowing the past, we have to ask whether this situation will hold in the future.

The mechanisms underlying the expression of resistance of Staph. eureus to penicillin and methicillin are different. But, in addition to resistance, Staph. eureus can also show the phenomenon of tolerance; the absence or suppression of the normal autolytic enzyme system in the bacterial cell renders the minimal bactericidal concentration (MBC) of bactericidal antibiotics many folds higher than the minimal inhibitory concentration (MIC) (Toumanen, Durack and Tomasz, 1986).

Resistance to some older antistaphylococcal agents such as fusidic acid has remained relatively uncommon over the years. There is a need to re-assess both old and new antistaphylococcal agents in order to deal adequately with methicillin-resistant Staph. sureus (MRSA), and to improve the treatment of severe staphylococcal sepsis.

general de la companya de la company

The second secon

Several studies have been carried out in different countries to assess the problem of staphylococcal infection especially MRSA. This work aims at measuring the size of such a problem in an Egyptian hospital. Also, to determine the sensitivity pattern of staphylococci isolated from hospital-aquired infections and those isolated from community-aquired ones. It also aims to study the effect of treatment of infections due to resistant staphylococci by the

suitable antimicrobial agent.

REVIEW OF

STABILLOCOCCUS AURBUS

Migrobiology:

The term Staphylococcus is derived from the Greek expression staphyle (bunch of grapes), and it reflects its characteristic microscopic arrangement in clusters.

Microscopically, Staph. aureus is a gram-positive organism, with a diameter of 0.7-1.2 um. These cocci occur singly, in pairs, in short chains, and have a tendency to form clusters, because cell division occurring in the three perpendicular planes does not lead to full separation of the daughter cells. Cluster formation is favoured by culturing the organism on solid media. These properties, although most often present in laboratory strains, sometimes are missing in clinical specimens and can lead to erroneous diagnoses; thus, cells in stationary phase or ingested by phagocytes occasionally appear as gram-negative on smear; clustering can be very limited in liquid media (Waldvogel, 1990). Thus, single cocci, pairs, tetrads, and chains are also seen in liquid cultures. Young cocci stain strongly gram-positive; on againg, many cells become gram-negative.

Staphylococci are nonmotile, non-spore-forming, facultative anaerobes. They ferment a wide variety of sugars to form acid but no gas. This property permits a differentiation from the large number of avirulent but morphologically similar members of the genus Micrococcus.

All micrococci are obligate aerobes, and, although they oxidize many sugars, they do not produce acid (Volk et al., 1991a).

Macroscopically, Staph. aureus is characterized by rapid growth under both aerobic and anaerobic conditions on blood agar and other nonselective solid media. Individual colonies are sharply defined, smooth, and convex, with a diameter of 1-4 mm. The basic golden yellow pigmentation, due to carotenoids, may not be readily apparent under certain conditions (e.g. growth under anaerobic conditions or in liquid medium) and may be visible only as a beige hue. Pigment production can be enhanced by further incubation at room temperature for 24-48 hours. Most strains of Staph. aureus produce haemolysis within 24-36 hours on horse, sheep, or human blood agar plates (Waldvogel, 1990).

Staphylococci are relatively resistant to drying, heat (they withstand 50°C for 30 minutes), and 9% sodium chloride but are readily inhibited by certain chemicals, e.g. 3% hexachlorophene (Jawetz et al., 1989a).

Identification:

Within the family Micrococcaceae, the human pathogenic genus Staphylococcus can be separated from the nonpathogenic genus Micrococcus by various tests, including: (1) anaerobic acid production from glucose, (2) sensitivity to 200 ug/ml of lysostaphin, and (3) production of acid from glycerol in the

presence of 0.4 ug/ml of erythromycin, all three tests being positive in the case of staphylococci (Waldvogel, 1990).

Further subclassification into the three main species (associated with humans). Staph. eureus, Staph. epidermidis and Staph. saprophyticus is of clinical importance. Staphylococcus aureus is fully identified by its positive reaction in the following tests:

(1) catalage - a test that differentiates them from the catalase-negative streptococci; (2) coaqulase - a allowing differentation between Staph. aureus and Staph. epidermidis, which is coagulase-negative. It is based on the action of either a cell-bound bacterial enzyme acting directly on fibrinogen or on the action of an extracellular enzyme on a modified thrombin molecule in rabbit plasma - the complex reacts in turn with fibrinogen to produce a fibrin clot in the absence of Ca2; (3) mannitol fermentation - which most often allows differentiation between Staph. aureus (always positive) and Staph. epidermidis (rarely positive). reaction is based on the property of Staph. aureus that degrades the polyhydric alcohol mannitol into acid compounds under anaerobic conditions; and (4) deoxyribonuclease test most Staph. aureus give a positive reaction, as opposed to Staph. epidermidis. The test is based on the differential solubilization of whole DNA, or fragments thereof, in acid. Finally, novobiocin resistance allows identification of Staph. saprophyticus (Waldvogel, 1990).

Further division of Staph. aureus uses phage typing to assign an unknown strain to one of four phage groups. In practice, one places a small drop of each phage group into a plate previously seeded with the unknown strain of Staph. aureus. After overnight incubation, clear plaques of lysis allow one to rank the unknown strain in one of the phage groups I-IV. This is difficult and is only done in large diagnostic centers for epidemiologic studies (Volk et al., 1991a).

Microbiologic determinants of infection due to Staph. aureus

A. Important Cell Wall Constituents (Antigenic Studture):

Peptidoglycan, a polysaccharide polymer containing linked subunits, provides the rigid exoskeleton of the cell wall. Peptidoglycan is destroyed by strong acid or by exposure to lysozyme. It is important in the pathogenesis of infection: it elicits production of interleukin-1 (endogenous pyrogen and opsonic antibodies by monocytes; and it can be a chemoattractant for polymorphonuclear leucocytes, has endotoxin like activity, produces a localized Shwartzman phenomenon, and activates complement (Jawetz et al., 1989a).

Teichoic acids, which are polymers of glycerol or ribitol phosphate, are linked to the peptidoglycan and are antigenic.

Antiteichoic antibodies detectable by gel diffusion may be found in patients with active endocarditis due to Staph.

aureus (Jawetz et al., 1989a).

protein A is a cell well component of many Staph. sureus strains that binds to the Pc portion of IgG molecules except IgG3. The Pab portion of IgG bound to protein A is free to combine with a specific antigen. Protein A has become an important reagent in immunology and diagnostic technology; for example, protein A with attached IgG molecules directed against a specific bacterial antigen will agglutinate bacteria that have that antigen ("coagglutination") (Jawetz et al., 1989a).

Nost Staph. aureus strains also contain a clumping factor or bound coagulase on their outer surface, which binds to fibrinogen by a nonenzymatic reaction and cause the microorganisms to aggregate.

Some Staph. sureus strains are coated with an external polysaccharide layer, meeting the definition of a capsule or loosely associated sline layer. This inhibits phagocytosis by polymorphnuclear leucocytes (PMNL) unless specific antibodies are present (Waldvogel, 1990).

Finally, phage typing is based on the lysis of Staph.

aureus by one or a series of specific bacteriophages. Such

bacteriophage susceptibility is a stable genetic

characteristic based on staphylococcal surface receptors

(Jawetz et al., 1989a).

B. Important Ensymes and Toxins:

Staphylococci can produce disease both through their ability to multiply and spread widely in tissues and through