

Ain Shams University
Faculty of Engineering
Structural Engineering Department

624.164 A-M.

Analysis of Interaction of In-Situ Walls with Ground

Ву

B. Sc. Civil Engineering (1992) Albaath University - Syria

61156

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Civil Engineering

Supervised By

Dr. Fathalla Mohamed El-Nahhas Prof. of Geotech. Engineering Ain Shams University

Dr. Ali Abdel-Fattah Ali

Associate Prof. of Geotech. Engineering

Ain Shams University

Cairo - 1997

•			

EXAMINER COMMITTEE

Name, Title, Affiliation

Signature

Prof. Dr. Mostafa M. Sherif
 Prof. of Geotech. Engineering
 Housing and Building Research Center

Morty Shirl

 Prof. Dr. Mona Mostafa Eid Prof. of Geotech. Engineering Ain Shams University

Mombed

Prof. Dr. Fathalla Mohamed El-Nahhas
 Prof. of Geotech. Engineering
 Ain Shams University

Faille EINF

4.Dr. Ali Abdel-Fattah Ali Associate Prof. of Geotech. Engineering Ain Shams University Al. Abdel Fathe h

Date: / / 1997

·		

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of M. Sc. in Civil Engineering.

The work included in the thesis was carried out by the author in the department of Structural Engineering, Ain Shams University, from April, 1996 to July 1997.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Date : / / 1997

Signature: 1. Sumul 1. Suf

Name : Osama Mohammed Yosef Assaf

ACKNOWLEDGMENTS

I wish to express my thanks and appreciation to Prof. Dr. Fathalla El-Nahhas for his supervision, guidance and both technical and moral support through this research. I also wish to express my deep gratitude to associate. Prof. Dr. Ali Abdel-Fattah Ali for his encouragement, invaluable advises and guidance during each stage of this research.

Finally, I wish to dedicate this work to my family and especially to my wife for giving me the suitable atmosphere during the time spent on this study.

Ain Shams University
Faculty of Engineering
Struct, Eng. Department

Abstract of the M. Sc. thesis submitted by:

Eng. Osama Mohammed Yosef Assaf

Title of the Thesis: "Analysis of Interaction of In-Situ Walls with Ground"

Supervisors: 1. Prof. Dr. Fathalla Mohammed El-Nahhas

2. Dr. Eng. Ali Abdel-Fattah Ali

Registration Date: 16/4/1996 Examination Date: //1997

Abstract

Braced excavation construction is an important and commonly encountered geotechnical problem in urban development. It is usually analyzed using conventional design methods or finear elastic finite element analysis without sufficient consideration of the modeling of the construction operations and soil-structure interaction effects.

This research proposes a software computer program for designing the braced excavations to be constructed in soils. The program uses recent design practices to achieve improved speed as well as reliability of calculations.

The program is coded with a high degree of user friendliness through an easily followed format and explicit data prompts. Primary emphasis in developing the software is placed on assessment of the effect of complex as well as nonuniform soil conditions in order to achieve the safest and most economical design of braced excavations. Finite elements were used in the program, and the nonlinear stress-strain behaviour of the soil was utilized. Spring type (lateral subgrade reaction) interface elements were adopted to model the soil-diaphragm wall contact surface.

This thesis presents a comparative study between result of the nonlinear finite element analysis and the field measurements which had been compiled during construction of one of the subway stations of the Greater Cairo Underground Metro, line 2.

An extensive parametric study was also carried out to evaluate the sensitivity of the utilized numerical model and the effect of the different factors concerning the soilwall interaction on the behaviour of the diaphragm wall.

Key words: Braced excavation, computer program, comparative study, diaphragm wall, lateral subgrade reaction, spring, nonlinear analysis, Finite element.

TABLE OF CONTENTS

CHATER	PAGE
1. INTRODUCTION	
1.1 General	1
1.2 Nature of the Problem	2
1. 3 Objective of the Research	3
2. LITREATURE SURVEY	
2. 1 Introduction	4
2.2 Types of Retaining Structure	9
2.3 Barced Excavations	13
2.4 Soil Pressures on Braced Cofferdams	17
2.5 Role of Ground Water	21
2.6 Methods of Analysis	23
2.6.1 Simple methods of analysis	24
2.6.1.1 The wedge theroy	25
2.6.1.2 Rankine earth pressure	25
2.6.1.3 Terzaghi-Peck procedure	27
2.6.2 Beam-Spring approaches	29
2.6.3 Staged Excavation-Continuous Beams Method (CBM)	32
2.6.4 Staged Excavation - Finite Defference Method(FDM)	34
2.6.5 Full Numerical Analysis or Finite Element Method	37
(FEM)	
2.7 Methods for Prediction of Ground Loss Around the	38
Exevations	
2.7.1 Mathematical presentation for the settlement distribution	39
2.7.2 Methods based on the data-base results	41
3. METHOD OF ANALYSIS AND NUMERICAL MODEL	

3.1 Introduction	43
3.2 Subgrade Reaction Basis	43
3.3 Subgrade Reaction Modulus Determination	44
3.4 Lateral Modulus of Subgrade Reaction	46
3.5 Finite Element Model	47
3.5.1 Classical solution of beam on elastic foundation	48
3.5.2 Finite element solution of beam on elastic foundation	51
3.5.2.1 General equations in solution	51
3.5.2.2 Developing the A matrix	53
3.5.2.3 Developing the S matrix	55
3.5.2.4 Developing the $S A^T$ and $AS A^T$ element matrices	57
3.6 Nonlinear Analysis	59
3.7 General Description of the Program	61
4.PARAMTRIC STUDY AND CASE HISTORY	
4.1 Introduction	65
4.2 Case History	65
4.2.1 Finite Element Analysis for the Case History	67
4.2.2 Soil characteristics at Rod El-Farag station	76
4.2.3 Construction procedure of Rod El-Farag station	80
4.2.4 Finite element configuration	87
4.2.5 Results of the case history	87
4.2.6 Comparison between the field measurements and the	89
results of the finite element analysis	
4.3 Parametric Study	93
4.3.1 Effect of the constitutive model of soil	93
4.3.2 Effect of elastic modulus of soil $E_{\mathcal{S}}$	97
4.3.3 Effect of modulus number (K)	97

4.3.4 Effect of modulus numbers (R_f) and (n)	102	
4.3.5 Effect of Poisson's ratio v	102	
4.3.6 Effect of soil cohesion C	102	
4.3.7 Effect of angle of internal friction \$\phi\$	102	
4.3.8 Effect of the lateral soil pressures distribution	109	
4.3.9 Effect of ground water level	114	
4.3.10 Effect of variation of the wall stiffness	120	
5. SUMMARY AND CONCLUSIONS		
5.1 Introduction	123	
5.2 Summary	123	
5.3 Conclusions		
5.4 Recommendation for further studies	124	
6. INDEX	126	
REFERENCES		
HELEVELOS	164	