

Modelling And Design Of Concurrent Processing Algorithms

Thesis

Submitted In Partial Fulfilment For The Requirements Of The M.Sc.Degree (Computer Science)

621.39 621.39

Ву

Tarek Helmi Abd El-Nabi

(B. Sc. Honor)

Supervisors

Prof. Dr. Nashat Faried M. Fathi
Prof. Of Mathematics
Department Of Mathematics
Faculty Of Science
Ain Shams University

Dr. Mostafa Sami M. Mostafa Ass. Prof. Of Computer Science Department Of Mathematics Faculty Of Science Suez Canal University

Ain Shams University (1996)

Modelling And Design Of Concurrent Processing Algorithms

Thesis Supervision:

Approved

1. Prof. Dr. Nashat Faried M. Fathi

2. Ass. Prof. Mostafa Sami M. Mostafa

Student's name:

Signature

Tarek Helmi Abd El-Naby

Acknowledgment

ACKNOWLEDGMENT

Praise be to ALLAH for giving me the ability to achieve this work.

I am indebted to Dr. Mostafa Sami M. Mostafa, Ass. Prof. of computer science, Faculty Of Science, Suez Canal University for suggesting the problem and continuous guidance throughout this thesis. Also I am very thankful to Prof. Dr. Nashat Faried M. Fathi, Prof. of Mathematics, Faculty Of Science, Ain Shams University for the preparation and writing of this thesis.

Thanks are also due to all members of the Mathematics Department Of Suez Canal University for their kind help and encouragement.

My thanks also go to Dr. Ahmed Ahmed El-Shamy, Dr. Tawfik Atit-Allah and Dr. Medhat Rakha

Finally, I would like to express my deep gratitude to my friends. Hesham Kamal Arafat, Taha El-Kzaz, Sayed Ibrahim, Ahmed Hassn and Ashraf Saber for helping me throughout this thesis.

Contents & List of Figures

CONTENTS

ABSTRACT	1
INTRODUCTION	1
CHAPTER 1: AN OVERVIEW ON CONCURRENT PROCESSING	6
1.1- PROCESS, PROCESSOR AND RESOURCE	6
1.1.1- RELATION BETWEEN PROCESSES	7
1.1.2- TYPES OF SYSTEM RESOURCES	8
1.2- CONCURRENT PROCESSING	8
1.3- PARALLEL PROCESSING LEVELS	10
1.4- DIFFERENT TYPES OF PARALLELISM	11
1.4.1- Concurrency	11
1.4.2- Multiprocessing	11
1.4.3- Multiprogramming	12
1.4.4- Pipelining	12
1.4.5- Multipass algorithms, Interleaving, Co-routines,	12
and Pseudo-parallelism	
1.5- CONCURRENCY PROBLEMS	13
1.5.1 - Mutual Exclusion	14
1.5.2- Synchronization	15
1.5.3- Deadlock	16
1.5.4- Switching Problem	17
1.6- DESCRIPTION OF PARALLEL PROCESSES	18
1.6.1- Parallel initiation and termination mechanisms	18
1.6.2- Synchronization mechanism	21
1.6.3- Protection mechanism	21
1.7- CORRECTNESS OF CONCURRENT (PARALLEL)	22
PROGRAMS	
CHAPTER 2: PARALLEL ARCHITECTURES	23
2.1- EFFICIENT ARCHITECTURES FOR PARALLELISM	23
2.1.1- Special - or General - Purpose System	23

2.1.2- Grain Size (Grandiarny)	23
2.1.3- Interconnection (Topology)	24
2.1.4- Tightness of Coupling	25
2.1.5- Control and Data Mechanisms	26
2.1.6- Task Allocation and Routing	26
2.1.7- Reconfiguration	27
2.1.8- Programming Languages	27
2.1.9- Nature of Technology	27
2.1.10- Performance Evaluation	27
2.2- CLASSIFICATION OF PARALLEL ARCHITECTURES	27
2.2.1- The Relation of The Memory to The Processors	27
2.2.2- Multiplicity Of Instruction-Data Streams	28
2.3- EVALUATION CRITERIA	31
2.4- PARALLELISM IN UNIPROCESSOR SYSTEMS	32
2.5- BASIC PARALLEL ARCHITECTURES	33
2.5.1- Multiprocessors	33
2.5.2- Vector Processors	33
2.5.3- Pipeline Processors	33
2.5.4- Array Processors	34
2.5.5- Systolic Processors	35
2.5.6- Wavefront Array Processors	37
2.5.7- Cube Architectures	37
2.5.8- Pyramid Architectures	38
2.5.9- Prism Architectures	39
2.5.10- The INMOS Transputer	39
2.6- PERFORMANCE OF PARALLEL COMPUTERS	41
CHAPTER 3: PARALLEL PROCESSING IN ARTIFICIAL NEURAL	43
NETWORK	
3.1- ARTIFICIAL NEURAL NETWORK	43
3.2- NEURAL NETWORK CONCEPTS	45
3.3- MODELLING THE SINGLE NEURON	49
3.4- LEARNING ALGORITHMS	51

3.4.1- The Perceptron Learning Algorithm	51
3.4.2- Widrow-Hoff (Delta) Rule	52
3.4.3- Backpropagation Algorithm	53
3.5- PARALLELISM IN NEURAL NETWORK	56
3.6- ALGEBRAIC PARTITION OF SUPERVISED LEARNING	58
ALGORITHMS	
3.6.1- Wavefront Algorithm	58
3.6.2- Fox-Like Algorithm	60
3.7- PARALLEL BACKPROPAGATION MACHINE	63
3.8- PARALLELISM IN BACKPROPAGATION	66
3.9- PARALLEL IMPLEMENTATIONS	69
CHAPTER 4: MODEL DESCRIPTION AND ITS IMPLEMENTATION	70
4.1- OVERVIEW ON HIGH LEVEL PETRI NET	70
4.2- MODELLING OF LEARNING PHASE OF TWO LAYER	71
ANN BY USING HLPN	
4.2.1- Problem Definition	71
4.2.2- Model Description	73
4.3- SOFTWARE IMPLEMENTATION	75
4.3.1- Learning And Testing	76
4.3.2- Delta Rule Model	92
4.3.3- Demo	93
4.3.4- Help	93
CONCLUSION	95
APPENDIX	96
REFERENCES	136

List of Figures

Figure (1.1) Interleaving and Overlapping techniques	9
Figure (1.2) Deadlock system	16
Figure (1.3) The precedence graph of Co-begin and Co-end	19
Figure (1.4) The precedence graph of Fork instruction	20
Figure (1.5) The precedence graph of Join instruction	20
Figure (2.1) Different topologies of processors	24
Figure (2.2) The difference between the tightly and loosely coupled systems	25
Figure (2.3) SISD computer	28
Figure (2.4) SIMD computer	29
Figure (2.5) MISD computer	30
Figure (2.6) MIMD computer	30
Figure (2.7) Block diagram of general pipelining	34
Figure (2.8) Torus of 3x3 processors and ring of five processors	35
Figure (2.9) Basic principle of a systolic system	36
Figure (2.10) Three dimensional binary cube	37
Figure (2.11) Pyramid network	39
Figure (2.12) Basic structure of transputer	40
Figure (2.13) The structure of some multi-transputer	40
Figure (2.14) Various estimates of the speedup of an processor system over a single processor	42
Figure (3.1a) Simple neuron	44
Figure (3.1b) Details of the basic model	44
Figure (3.2) The difference between the two-layer and three-layer neural networks	46
Figure (3.3) Usual activation functions	48
Figure (3.4a) Supervised learning	49
Figure (3.4b) Unsupervised learning	49
Figure (3.5) A multilayer network	54
Figure (3.6) Matrix vector product Y=W.X on a torus of wavefront algorithm	59
Figure (3.7) State of matrices used for the product Y=W.X before and after the	61
first step of the Fox-Like algorithm on a 4x4 torus	
Figure (3.8) General architecture of parallel network	63
Figure (3.9) Detailed architecture of each stage	64
Figure (3.10) Speedup in training parallelism	68
Figure (3.11) Speedup in spatial parallelism	68