Fluid Balance During Cardiopulmonary Bypass

Essay

Submitted for the Partial Fulfillment of the Master Degree in Anaesthesiology and Intensive Care

By

Mohamed Essam El-Din Hassa M.B., B.Ch.

Supervised by

Professor Dr. Samir Mahmoud Badier

Professror of Anaesthesiology and Intensive Care Faculty of Medicine - Ain Shams University

Professor Dr. Nahed Effat Youssef

Assistant Professor of Anaesthesiology and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Alaa Eid Mohamed

Lecturer of Anaesthesiology and Intensive Care Faculty of Medicine - Ain Shams University

> **Faculty of Medicine Ain Shams** 1995

Acknowledgement

No words could ever express my utmost gratitude to Prof. Dr. Samir Mahmoud Badier Professor of Anaesthesiology and Intensive Care, Faculty of Medicine, Ain Shams University for granting me the privilage of working under his supervision.

I would like to express my deepest appreciation to Professor Dr. Nahed Effat Youssef Assistant Professor of Anaesthesiology and Intensive Care, Faculty of Medicine, Ain Shams University, that I am greatly indebted for her precious guidance, valuable suggestions and kind support throughout the whole work.

I would Like to thank **Dr.** Alaa Eid Mohamed lecturer of Anaesthesiology and Intensive Care, Faculty of Medicine Ain Shams University for his generous help, patience and encourgement.

Last but not least, my wormest thanks to my family to whom I owe everything for being my self.

M. Essam

To My Family

Contents

Introduction	1
Physiology of body fluids	2
Components of Cardiopulmonary Bypass machine	23
Fluid balance during Cardiopulmonary Bypass	40
Pathophysiology of Cardiopulmonary Bypass affecting fluid balance	54
Summary	62
References	64
Arabic summary	

List of Figures

Fig. (1):	Distribution of body fluids compartments	3
Fig. (2):	Diagrammatic representation of osmosis	8
Fig. (3):	Electrolyte composition of human body fluids	10
Fig. (4):	Transport of ions and small molecules across cell membrane	12
Fig. (5):	Components of CPB machine	24
Fig. (6):	Diagrammatic representation of oxygenator and arterial pump	26
Fig. (7):	Accumulation of fluid during CPB is related to type of cardiac disease	43
Fig. (8):	Fluid accumulation during CPB shows significant decrease with the addition of albumin and mannitol to the prime	58
	manner to the prime	50

List of Tables

Table (1): Daily gains and losses	
Γable (2): Distribution of Na ⁺ and K ⁺ in the body	15
Table (3): Estimation of blood volume by age	34
Γable (4): Acceptable values for the prime	36

Introduction

Introduction

During cardiopulmonary bypass there exist some fluid shifts as a result of certain pathophysiological changes occurring during this period with subsequent interstitial fluid accumulation leading to postoperative weight gain together with organ oedema that may be more pronounced in some organs than in others altering their function.

The patient's preoperative type of cardiac disease and cardiac status may have a profound effect on fluid accumulation.

The proper preparation of fluids used during bypass together with accurate calculation of the amount of gained and lost fluids during bypass may lessen fluid accumulation, decreasing the incidence of using diuretics or oncotic agents postoperatively, and most important preventing organ dysfunction.

Physiology of Body Fluids

Physiology of body fluids

Organisation of the body:

The cells that make up the body bathed in an internal sea of fluids which is the extra cellular fluid (ECF). From this fluid, the cells take up O₂ and nutrients, and discharge metabolic waste products (*Rose*, 1989).

Concerning the body fluids, the body is divided into two main compartments, intracellular and extracellular, the later is subdivided into interstitial and intravascular represented by circulating plasma volume, the interstitial fluid is the part of ECF outside the vascular system, bathing the cells (Ganong, 1993).

Size of the body fluid compartments:

About one-third of the total body water (TBW) is extracellular, while the remaining two-thirds are intracellular. In the average, TBW represents about 60% of the body weight. The intracellular compartment accounts for about 40%, and the extracellular for 20% of the body weight, being divided into 15% represented by interstitial fluid, and 5% by the plasma volume. This distribution is shown in Fig. (1) (Arieff and Defronzo, 1985).

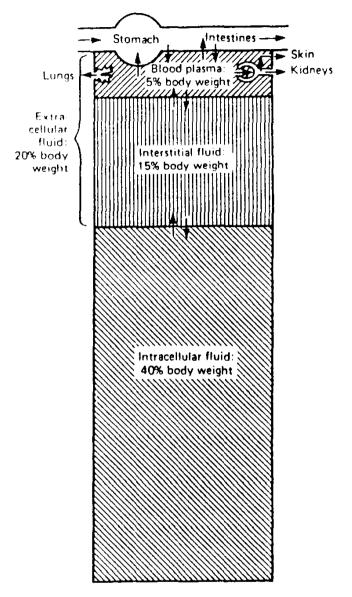


Fig. (1):

Distribution of body fluid compartments.

(Ganong, 1993)

The water content:

The water content of lean body tissue is constant at 71-72 ml/100 gm of tissue, but since fat is relatively free of water, so the ratio of TBW to body weight varies with the amount of fat present, in young male water constitutes about 60% of body weight. These values are some what lower in females, and decrease in both with age (Guyton, 1992).

Total body water and water balance:

Water balance is determined by the difference between water intake as influenced by thirst, habit and availability, and water loss through cutaneous, pulmonary, gastrointestinal and renal routes as shown in table (1), that if the intake exceeds the losses, the total body water increases and water balance will be positive, but the excess water will be distributed in such a manner to give a steady state, that one-third ECF and two thirds intracellular (Arieff and Defronzo, 1985).

		
Drink	1200	ml
in food	1000	m1
from oxidation	300	ml
Total	2500	ml
	•…	
Expired air	400	ml
Faeces	100	ml
Skin	300	ml
Urine (obligatory)	500	ml
Free urine	1200	ml
Total	2500	ml
	from oxidation Total Expired air Faeces Skin Urine (obligatory) Free urine	in food 1000 from oxidation 300 Total 2500 Expired air 400 Faeces 100 Skin 300 Urine (obligatory) 500 Free urine 1200

Table (1): Daily gains and losses

(Arieff and Defronzo, 1985).