CORRELATIVE HISTOPATHOLOGICAL AND IMMUNOHISTOCHEMICAL STUDIES OF OVARIAN TUMORS, USING ESTROGEN RECEPTORS AND CARCINOEMBRYONIC ANTIGEN

Thesis Submitted for Partial Fulfilment of M.D. Degree of Pathology

Abd El-Menem Hussein Lubbad

H. H. M.B., B.Ch. & M.M.Sc.

Supervised by

Prof. Dr. Eglal Abd El-Razik

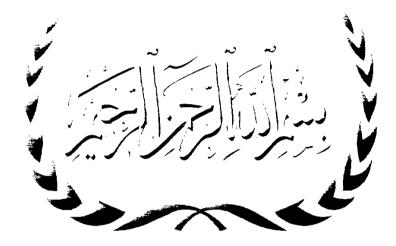
Prof. of Pathology -Faculty of Medicine - Ain Shams University

Prof. Dr. Ahmed A. H. El-Tawil

Prof. of Pathology - Faculty of Medicine - Ain Shams University

Prof. Dr. Aly Elvan Khalafallah

Prof. of Obstetric and Gynecology Faculty of Medicine - Ain Shams University


Prof. Dr. Zeinab Abdel Rahman Kamar

Prof. of Pathology - Faculty of Medicine - Ain Shams University

Prof. Dr. Salwa Ibrahim El-Haddad

Prof. of Pathology - Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 1998

"يرفع الله الذين أمنوا منكموالذين أتوا العلم درجات

صدق أنَّ العظيم سورة المجادلة أية (١١)

ACKNOWLEDGMENT

I wish to express my deepest thanks and gratitude to *Prof. Dr. Iglal Abdel Razek*. Professor of Pathology. Faculty of Medicine, Ain Shams University, for her honest supervision, valuable guidance and giving me the honor to work under her supervision.

I would like to express my sincere thanks and appreciation to *Prof. Dr. Ahmed El-Tawil*. Professor of Pathology. Faculty of Medicine. Ain Shams University, for his great support enormous encouragement and meticulous follow up of this study.

I owe a lot of thanks to *Prof. Dr. Aly Elian Khalafallah*. Professor of Obstetric and Gynecology, Faculty of Medicine. Ain Shams University for his great help, motivation and support to complete this work.

I am really indebted to *Prof. Dr. Zeinab Kamar*. Professor of Pathology. Faculty of Medicine. Ain Shams University, who gave me a lot of her time, knowledge, unforgettable guidance, and kind supervision on the procedures of immunostaining which is a corner stone in this study.

I would like to express my deep gratitude and thanks to *Prof.*Dr. Salwa El Haddad. Professor of Pathology, Faculty of Medicine.

Ain Shams University for her kind supervision and energetic help in following the details to ensure this work to reach an updated level.

I wish to thank deeply *Prof. Dr. Mohamed El-Shawarby*. Professor of Pathology, Faculty of Medicine, Ain Shams University for his sincere advices and valuable help throughout this work.

I would also like to express my deep thanks to *Prof. Dr. Azz El-Din Azzam*. Professor of Obstetrics and Gynecology, and Director of Early Cancer Detection Unit, and all members of the Cyto-Diagnostic Unit, Ain Shams University, for their continuous encouragement throughout this work.

LIST OF CONTENTS

		Page
Ir	itroduction	1
A	im of the Work	3
Review of Literature		4
-	Anatomy and development of the ovary	4
_	Histology	7
-	Classification of ovarian tumors	13
-	Pathology of ovarian tumors	24
-	Tumor markers of ovarian neoplasms	64
-	Steroid hormone receptors	68
_	Estrogen receptors in normal human ovarian tissue	81
-	Estrogen receptors in ovarian tumors	83
-	Carcinoembryonic antigen	93
-	Role of carcinoembryonic antigen in ovarian tumors	100
М	aterials and Methods	105
R	esults	113
D	iscussion	160
Sı	ımmary	167
C	onclusion	169
R	eferences	171
4	rabic Summary	

LIST OF ABBREVIATIONS

a-SMA a-Smooth muscle actin.
AEC Amino ethyl carbazole.
AFP Alpha-fetoprotein.
BGP Biliary glycoprotein.

cDNA Complementary deoxyribonucleic acid.

CEA Carcinoembryonic antigen.

CR Complete response.

DAB Di-amino-benzidine.

DCC Dextran coated charcoal.

DNA Deoxyribonucleic acid.

EMA Epithelial membrane actin.

ER Estrogen receptor.

ER-ICA Estrogen receptor-immunocytochemical assay. FIGO Federation of Gynecology and Obstetrics.

Fmol mg Femtomoles per milligram.

GFAP Glial fibrillary acidic protein.

GOG Gynecologic oncology group.

H & E Hematoxviin and Eosin.

HPF High Power field.

hPLAP Human placental alkaline phosphatase.

IHC Immunohistochemistry.

LAB-SA Labeled (Strept)-Avidin-Biotin.

LH Luteinizing hormone.LMP Low malignant potential.MAb Monoclonal antibody.

MEIA Monoclonal antibody-enzyme immunoassay.

MF Mitotic figure.

MIBT Mucinous intestinal borderline tumor.

MMBT Mucinous mullerian borderline tumor.

MMMT Malignant mixed mesodermal tumors.

mRNA Messenger ribonucleic acid.

MSA Muscle specific actin.

NCA Non-specific cross reacting antigen.

NCI National Cancer Institute.

NS Not significant.

OBTs Ovarian borderline tumors. PBS Phosphate-buffered saline.

PD Increasing disease.
PR Progesterone receptor.
PR Partial response.

SD Stable disease.

UK United Kingdom.

USA United States of America.

Vs. Versus.

WHO World Health Organization.

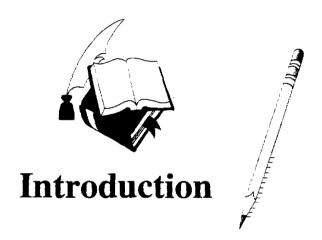
LIST OF DIAGRAMS

No.	Diagram	Page
1	Three-week embryo.	6
2	Ovarian follicles.	8
3	Model of steroid receptor protein.	70
4	The binding domains of the estrogen receptor	71
5	Mechanism of action of steroid and thyroid hormones	72
6	Estrogen receptor binding sites.	73
7	Estrogen and progesterone responsive cell.	74
8	CEA molecule structure	94
9	Apical aspect of normal human colonic mucosa	97

LIST OF TABLES

No.	Table	Page
	Relative frequency of female genital tract malignancies.	1 (1
2	Tumor markers in evarian neoplasms	61
3	ER expression according to histologic type	85
1	Positive receptor with histologic types	86
5	Relation of ER expression in histological type	86
5	Relation of ER and histologic grade	88
-	Age distribution.	113
8	Histological type of 44 epithelial ovarian tumors	116
ŷ	Histological type of 9 non-epithelial ovarian tumors	116
15	Histological types of 7 metastatic tumors	1:-
1 1	Histological grading of 33 malignant epithelial tumors	117
12	Relationship between ER expression and histological	
	type of 44 epithelial tumors	125
13	Relationship between ER expression and histological	
	type of non-epithelial tumors	126
1 ÷	Relationship between ER expression and types of	
	metastatic tumors	126
15	Relationship between ER expression and grade of	
	malignant epithelial tumors	127
16	Relationship of ER expression and age groups	127
l -	Relationship between CEA and histological type of 44	
	epithelial tumors	135
13	Relationship between CEA expression and 7 metastatic	
	tumors	135

LIST OF GRAPHS


No.	Graph	Page
1	Age distribution in the studied cases	114
2	The two major groups of the 60 studied cases	118
3	Histological types of the 53 primary ovarian tumors	119
4	Histological diagnosis of 44 epithelial ovarian tumors	120
5	Histological diagnosis of 7 metastatic ovarian tumors	121
6	Histological grading of the 33 malignant epithelial	
	tumors	122
7	Relation between ER expression and histological types	
	of the studied cases	128
8	Relation between ER expression and histological types	
	of the 44 epithelial tumors	129
9	ER expression in malignant epithelial ovarian tumors	130
10	Relation between ER expression and histological types	
	of the 9 non-epithelial and 7 metastatic tumors	131
11	Relation between ER expression and grade of	
	malignant epithelial tumors	132
12	Relation between ER expression and age groups	133
13	Relation between CEA expression and histological	
	types of the studies cases	136
14	Relation between CEA expression and histological	
	types of the epithelial tumors	137
15	Relation between CEA expression and malignant	
	epithelial tumors	138

LEGEND OF FIGURES

No.	Figure	Page
1	Histostain-ER kit, second generation LAB-SA	
	detection system	106
2	Sequenza immunostaining center	108
3	Histostain-plus kit, second generation LAB-SA	
	detection system	111
1	Well differentiated papillary serous carcinoma	139
5	Well differentiated papillary serous carcinoma with	
	strong nuclear staining of ER	139
6	Well differentiated papillary serous carcinoma with	
	strong nuclear staining of ER	140
-	Well differentiated papillary serous carcinoma with	_
	strong nuclear staining of ER	140
8	Moderately differentiated serous carcinoma	141
9	Moderately differentiated serous carcinoma with	
	moderate nuclear staining of ER	141
10	Moderately differentiated serous carcinoma with	
	moderate nuclear staining of ER	142
11	Poorly differentiated serous carcinma	142
12	Poorly differentiated serous carcinoma with strong	
	nuclear staining of ER	143
13	Poorly differentiated serous carcinoma with strong	1.43
	nuclear staining of ER.	143
14	Endometrioid carcinoma with moderate nuclear	144
	staining of ER Endometrioid carcinoma with moderate nuclear	1 +++
15		144
1.0	staining of ER	145
16	Granulosa cell tumor-insular pattern	175
17	Granulosa cell tumor - insular pattern- with moderate	145
	nuclear staining of ER	143

18	Granulosa cell tumor - insular pattern- with moderate nuclear staining of ER
19	Granulosa cell tumor - trabecular pattern
20	Granulosa cell tumor- trabecular pattern with strong nuclear staining of ER
21	Metastatic carcinoma from the stomach- Krukenberg
22	Metastatic ovarian tumor from the stomach- Krukenberg- with weak nuclear staining of ER
23	Dysgerminoma
24	Dysgerminoma showing negative staining for ER
25	Yolk sac tumor
26	Yolk sac tumor showing negative staining for ER
27	Mucinous, of low malignant potential - borderline-tumor
28	Mucinous of low malignant potential- borderline- tumor showing luminal border and focal faint cytoplasmic staining of CEA
29	Well differentiated mucinous carcinoma
30	Well differentiated mucinous carcinoma showing faint luminal border staining of CEA
31	Moderately differentiated mucinous carcinoma
32	Moderately differentiated mucinous carcinoma showing luminal border and focal faint cytoplasmic staining of CEA
33	Moderately differentiated mucinous carcinoma showing luminal border and focal faint cytoplasmic staining of CEA
34	Poorly differentiated mucinous carcinoma
35	Poorly differentiated mucinous carcinoma showing luminal border and focal faint cytoplasmic staining of CEA
36	Well differentiated papillary serous carcinoma showing

37	Endometrioid carcinoma	155
38	Endometrioid carcinoma showing strong luminal border	
	and focal moderate cytoplasmic staining of CEA	156
39	Endometrioid carcinoma with strong luminal border	
	staining of CEA	156
40	Metastatic carcinoma from the stomach-Krukenberg-	
	showing focal faint cytoplasmic staining of CEA	157
11	Metastatic carcinoma from the stomach-Krukenberg-	
	showing focal faint cytoplasmic staining of CEA	157
4 2	Metastatic carcinoma from the colon	158
43	Metastatic carcinoma from the colon showing strong	
	diffuse cytoplasmic staining of CEA	158
11	Metastatic carcinoma from the colon showing strong	
	diffuse cytoplasmic staining of CEA	159

INTRODUCTION

Ovarian cancer remains the leading cause of death among patients with gynecologic malignancies. There is virtually no reliable means for the early diagnosis of this cancer, and most patients present with an advanced stage of the disease. During the past two decades, interest has increased in the development of an immunodiagnostic method for ovarian cancer (Berns et al., 1992).

Cellular receptors for the female sex steroid hormones have been shown to have therapeutic and prognostic significance in carcinoma of the breast and endometrium. Recent data suggest that the same may be true for ovarian carcinoma. Neoplasms which are positive for estrogen receptor (ER) and or progesterone receptor (PR) may have better prognosis than tumors which are negative for these receptors. Furthermore, receptor positive tumors may be amenable to intervention with hormonal therapy (Geisnger et al., 1989).

There is evidence to indicate that ovarian cancer may be estrogen sensitive. Firstly, estrogen receptors are present within the majority of primary ovarian tumors. Secondly, the presence of estrogen receptor has been reported to be associated with a good prognosis (Langdon et al., 1993).

Approximately, 7% of all ovarian masses encountered by the surgeon are metastatic, usually from the gastrointestinal