ROLE OF TRANSVAGINAL ULTRASONOGRAPHIC MODALITIES IN THE DIAGNOSIS OF PELVIC MASSES

ESSAY

Submitted For Partial Fulfilment of Master Degree of Radiodiagnosis

BY
Kamal Ragab Youssef Youssef
M.B.,B.Ch.

Suppervised By

Prof. Dr.Ahmed Kamal EL Dorry

Professor of Radicdiagnosis
Faculty of Medicine
Ain Shams University

FACULTY OF MEDICINE
AIN SHAMS UNIVERSITY

1993

بسم الله الرحمن الرحيم

«قالوا سبحانك لاعلم لنا إلا ماعلمتنا إنك أنت العليم الحكيم»

سورة البقرة/ اية ٢٢

ROLE OF TRANSVAGINAL ULTRASONOGRAPHIC MODALITIES IN THE DIAGNOSIS OF PELVIC MASSES

ESSAY

Submitted For Partial Fulfilment of Master Degree of Radiodiagnosis

BY
Kamal Ragab Youssef Youssef
M.B.,B.Ch.

Suppervised By

Prof. Dr.Ahmed Kamal EL Dorry

Professor of Radiodiagnosis Faculty of Medicine Ain Shams Univesity

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

1993

Acknowledgment

At first, ultimate thanks to my God.

I am greatly honoured to express sincere and deep gratitude to Prof Dr. Ahmed Kamal El Dorry, Professor of Radiodiagnosis, Ain Shams University, for his support, continuous encouragement and valuable instructions.

Finally, deep appreciation is expressed to my family for their support and kind help.

Kamal

CONTENTS:	Page
1- Introduction and aim of work	
2- Equipmetns of transvaginal sonogaphy and Doppler systems.	1-22
3- The technique of different transvaginal sonographic modalities:	23-61
4- Normal pelvic anatomy.	62-75
5- Pathology of pelvic masses.	76-92
6- Defferential diagnosis of pelvic masses	93-102
7- Features of pelvic masses by different transvaginal sonographic modalities. with illustrative cases.	103-134
8- Summary and conclusion.	135-137
9- References.	138-141
10- Arabic Summary.	

List of Figures

Figure	Title	Page
1	Rotating-wheel mechanical scanner	8
2	Diagram of side lobes	8
3	Phased annular array	10
4	Curvy-linear array	12
5	Linear sequenced array	12
6	Basic scanning directions, planes and depths	28
7	The anatomical relations to the inserted transvaginal probe	31
8	Normal uterus: long axis	35
9	Normal uterus: semicoronal short axis	35
10	Normal uterus: saggital image	37
11	Normal ovary with a mature follicle	41
12	Normal ovary with a corpus luteum	41
13	Normal tube	43
14	Loculated cub-de-sac fluid	43
15	Transvaginal probe in relation to the female pelvic vessels	52
16	Triplex TV CDS of main uterine artery	59
17	Triplex TV CDS of arcuate arteries	59

Figure	Title	Page
18	Triplex TV CDS of ovarian vessels	61
19	Anatomy of the female pelvis	63
20	The blood supply of the uterus, oviduct and ovary	67
21	The lymphatic drainage of the female genital organs.	69
22	Follicular cyst	95
23	Heamorrhagic corpus luteum	95
24	Bilateral cystadenomas	96
25	Metastatic tumour in the ovary	97
26	Endometrioid carcinoma of the ovary	97
27	Dermoid cyst	98
28	Dermoid cyst	98
29	Solid ovarian mass	100
30	Endometrioma of the ovary	100
31	Endometrioma of the ovary	101
32	Paraovarian cyst	101
22	Intramural fibroid	102

Figure	Title	Page
34	Intramural fibroid	104
35	Submucous fibroid	104
36	Subserous fibroid	105
37	Diagram showing degrees of myometrial invasion as determined by TVS.	107
38	Non invasive tumour	108
39	Superficial myometrial invasion	108
40	Moderately invasive polypoid lumour	109
41	Deep myometrial invasion	109
42	Intra-ovarian cyst	111
43	Hemorrhagic corpus luteum	111
44	Bilateral mucinous cystadenomas	113
45	Right ovary: serous cystadenoma	113
46	Dermoid cyst with a layer of sebum	114
47	Dermoid cyst containing echogenic teeth	114
48	A hemorrhagic corpus luteum cyst	116

Figure	Title	Page
49	Torsed endometrioma	117
50	Right ovary: solid tumour	117
51	Tubo-ovarian abscess	123
52	Hydrosalpinx	123
53	Ectopic pregnancy: tubal ring	125
54	Ectopic pregnancy: unruptured	126
55	Ectopic pregnancy: ruptured	126
56	Triplex TV CDS of serous cystadenocarcinoma	131
57	Triplex TV CDS of immature teratoma	132

INTRODUCTION AND AIM OF THE WORK

Introduction and aim of work:

Sonography is the diagnostic modality of choice for evaluation of patients with a pelvic mass. Transvaginal sonography (TVUS) affords improved resolution of the pelvic structures over that which can be obtained with the conventional transabdominal approach (TAUS). More information can be obtained using Doppler ultrasound than could previously be gained by morphological study. Color Doppler indicates direction, velocity, and type of blood flow, whereas pulsed Doppler enables quantification of such flow.

However, the combination of high quality B-mode images, pulsed Doppler and color coded Doppler flow imaging in the same vaginal probe produces a superb simultaneous picture of morphological and blood flow information from the female pelvic circulation to the pelvic mass.

Aim of this work is to emphasize the increasing importance of transvaginal sonographic modalities in the diagnosis of pelvic masses.

Equipments of Transvaginal Sonography And Doppler Systems

Equipments of Transvaginal Sonography And Doppler Systems

Introduction:

Transvaginal sonography is a recent innovation that requires knowledge of pelvic anatomy, clinical obstetrics and gynecology, and the instrumentations used to obtain diagnostic images. Improvements in sonographic (ultrasound) instrumentation have primarily resulted from more complete integration of high speed digital electrones. Special purpose microcomputers are being used to steer and dynamically focus array transducers, allowing greater flixibility and control over image formation and producing images with both higher spatial and intensity resolution. Recent developments in real-time color Doppler systems have also been the product of high-speed special-purpose microprocessors.

(A.C.Fleischer and Ronald R.Price,1992)

The number of transvaginal ultrasound probes and machines has increased dramatically recently. A welcome side effect to this has been the development of new features for many of these machines. While the basic concepts of ultrasonography obviously do not change for the vaginal approach, there are a number of considerations, both practical and scientific, that affect the equipment for this diagnostic medium. (D.B.Peisner,1991)

Scanner Characteristics :-

Real-time instruments rapidly sweep the ultrasound beam through

a sector, rectangular, or trapizoidal area by either mechanical or electric means. Frame rates greater than 15 frames per second are required to produce flicker-free images and to observe moving structures. Because real-time probes are not attached to an articulated scanning arm, the sonographer has great flexibility in selecting the image plane orientation.

Ultrasound scanning systems typically consists of:

- 1 A mechanical or electronic means of moving the ultrasound beam through an image plane.
- 2 An electronic signal processing unit with constrols for varying the transducer power output, overall receiver gain, and other operational parameters such as time gain compensation (TGC).
- 3 A gray scan display unit equipped with controls for varying the image brightness and contrast.
- 4 A device for permanently recording the images (polaroid, multi-image format camera, paper printers, videotape, or disk).

The console also has a keyboard to superimpose patient identification, examination data, and study information on the recorded images. (A.C.Fleischer and Ronald. R.Price,1992)

Transducer Designs

Transducers are characterized by their frequency, size (effective apperture in the case of arrays), and degree of focusing.

The typical range of frequency for diagnostic ultrasound imaging